مروری بر حضور روکش‌کاری لیزری در فرایندهای پوشش‌دهی، بازسازی و نمونه‌سازی قطعات

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشجوی کارشناسی، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 دکتری، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

4 استاد، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

هدف مطالعه حاضر بیان ویژگی­های روکش­کاری لیزری و کاربرد آن در سه حوزه پوشش­دهی، تعمیر/بازسازی و نمونه­سازی است. از جمله نوآوری این پژوهش می­توان مقایسه ویژگی­ها و برتری­های روکش­کاری لیزری با سایر روش­های مرسوم نظیر تیگ و ... با ذکر نمونه مطالعاتی را نامبرد. همچنین، بررسی حوزه­های پوشش­دهی، تعمیر/بازسازی و نمونه­سازی روکش­کاری لیزری با ذکر مثال عینی صنعتی به جهت درک کاربرد دقیق از دیگر نوآوری­های مطالعه حاضر محسوب می­شود. به عبارت دیگر، نوآوری این پژوهش، ارائه ویژگی­ها و کاربرد روکش­کاری لیزر در سه حوزه پوشش­دهی، بازسازی و نمونه­سازی قطعات صنعتی در مقایسه با سایر روش­ها است که در مطالعه­ای بدان پرداخته نشد. در این راستا، نخست مزایای این تکنولوژی ارائه خواهندشد. جزئیات فرایند پوشش­دهی لیزری دیسک­های ترمز بیان می­شوند. نحوه تعمیر نازل سوخت توربین گازی و بازسازی بدنه موتور لوکوموتیو به روش لیزری نیز معرفی خواهندشد. مثال برجسته نمونه­سازی لیزری یعنی تولید محفظه احتراق موتور هلیکوپتر نیز بررسی می­شود. به جهت درک بهتری، مروری جامع و کامل بر مطالعات پیشین ارائه خواهدشد. در نهایت سرعت و توان­های مورداستفاده در هر یک از سه حوزه پوشش­دهی، بازسازی و نمونه­سازی لیزری معرفی می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

A review on the presence of lasers in the processes of coating, repair, and prototyping

نویسندگان [English]

  • Mohammad Hossein Farshidianfar 1
  • Seyed Fariborz Eshraghi 2
  • Seyedeh Fatemeh Nabavi 3
  • Anooshiravan Farshidianfar 4
1 Asisstant Professor, Mechanical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran.
2 B.Sc. student, Mechanical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran.
3 PhD, Mechanical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran.
4 Professor, Mechanical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

The aim of this study is to provide the characteristics of laser cladding and its application in three areas of coating, repair and prototyping. Among the innovations of this research, we can compare the features and advantages of laser coating with other conventional methods such as tags, etc. by mentioning sample studies. Also, the study of the areas of coating, repair / reconstruction and prototyping of laser coating with mentioning an objective industrial example in order to understand the exact application of other innovations of the present study is considered. In other words, the innovation of this research is the presentation of features and application of laser coating in three areas of coating, reconstruction and prototyping of industrial parts in comparison with other methods that were not addressed in a study. In this regard, the benefits of this technology will be presented first. Details of the laser coating process of the brake discs are given. How to repair the gas turbine fuel nozzle and rebuild the locomotive engine body by laser method will also be introduced. A prominent example of laser prototyping is the production of a helicopter engine combustion chamber. For a better understanding, a comprehensive overview of previous studies will be provided. Finally, the speed and capabilities used in each of the three areas of coating, reconstruction and laser prototyping are introduced.

کلیدواژه‌ها [English]

  • Laser
  • Laser cladding
  • Coating
  • Repair
  • Rapidprototype
[1]        A. A. Siddiqui and A. K. Dubey, "Recent trends in laser cladding and surface alloying," Optics & Laser Technology, vol. 134, p. 106619, 2021.
[2]        L. Xue, M. Donovan, Y. Li, J. Chen, S. Wang, and G. Campbell, "Integrated rapid 3D mapping and laser additive repair of gas turbine engine components," in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1, pp. 318-325: Laser Institute of America.
[3]        S. Kalawrytinos and H. Desmecht, "Rejuvenating Engines with Rotating Internal Processing Heads: Efficient repair of worn cylinder bores through laser cladding," ed: Wiley Online Library, 2010.
[4]        M. Brandt, S. Sun, N. Alam, P. Bendeich, and A. Bishop, "Laser cladding repair of turbine blades in power plants: from research to commercialisation," International Heat Treatment and Surface Engineering, vol. 3, no. 3, pp. 105-114, 2009.
[5]        P. P. Alvisi and V. F. Lins, "An overview of naphthenic acid corrosion in a vacuum distillation plant," Engineering Failure Analysis, vol. 18, no. 5, pp. 1403-1406, 2011.
[6]        D. Wang, K.-L. Tsui, and Q. Miao, "Prognostics and health management: A review of vibration based bearing and gear health indicators," Ieee Access, vol. 6, pp. 665-676, 2017.
[7]        L. Santo, "Laser cladding of metals: a review," International Journal of Surface Science and Engineering, vol. 2, no. 5, pp. 327-336, 2008.
[8]        A. L. Schawlow and C. H. Townes, "Masers and maser communications system," ed: Google Patents, 1960.
[9]        K. F. Renk, Basics of laser physics. Springer,  2012.
[10]      مرندی م، نبوی، س. ف.، فرشیدیان­فر، م. ح. فرشیدیان­فر، جهان­پور، ج، شجاعتی، م.، "تحلیل آزمایشگاهی تاثیر پارامترهای فیزیکی بر ضخامت روکش حاصل از فرایند لیزری پره توربین بخار," in هفدهمین همایش ملی و ششمین کنفرانس بین المللی مهندسی ساخت و تولید, 2021.
[11]      Y. Ding, R. Liu, L. Wang, J. Li, and J. Yao, "Corrosion and Wear Performance of Stellite Alloy Hardfacing Prepared via Laser Cladding," Protection of Metals and Physical Chemistry of Surfaces, vol. 56, no. 2, pp. 392-404, 2020.
[12]      H. Zhang, J. Dai, C. Sun, and S. Li, "Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V," Journal of Materials Processing Technology, vol. 282, p. 116671, 2020.
[13]      F. Weng, H. Yu, C. Chen, and J. Dai, "Microstructures and wear properties of laser cladding Co-based composite coatings on Ti–6Al–4V," Materials & Design, vol. 80, pp. 174-181, 2015.
[14]      X. Tong et al., "Effects of pre-placed coating thickness on thermal fatigue resistance of cast iron with biomimetic non-smooth surface treated by laser alloying," Optics & Laser Technology, vol. 41, no. 6, pp. 671-678, 2009.
[15]      A. Emamian, M. H. Farshidianfar, and A. Khajepour, "Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites," Journal of Alloys and Compounds, vol. 710, pp. 20-28, 2017.
[16]      M. H. Farshidianfar, A. Khajepour, and A. P. Gerlich, "Effect of real-time cooling rate on microstructure in laser additive manufacturing," Journal of Materials Processing Technology, vol. 231, pp. 468-478, 2016.
[17]      M. Brandt, Laser additive manufacturing: materials, design, technologies, and applications. Springer, 2016.
[18]      R. Bernhard et al., "Laser Cladding – Additive Manufacturing," in Laser Cladding of Metals, P. Cavaliere, Ed. Cham: Springer International Publishing, 2021, pp. 1-8.
[19]      R. Vilar, "Laser cladding," Journal of laser applications, vol. 11, no. 2, pp. 64-79, 1999.
[20]      W.-W. Liu, Z.-J. Tang, X.-Y. Liu, H.-J. Wang, and H.-C. Zhang, "A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing," Procedia Cirp, vol. 61, pp. 235-240, 2017.
[21]      W. Assiri, A. Asiri, S. Roman-Alerigi, S. Batarseh, and M. Salman, "A New Horizon in Corrosion Prevention Using State of the Art High Power Laser Cladding Technology," in SPE Annual Technical Conference and Exhibition, 2020: Society of Petroleum Engineers.
[22]      O. Aranke, W. Algenaid, S. Awe, and S. Joshi, "Coatings for automotive gray cast iron brake discs: A review," Coatings, vol. 9, no. 9, p. 552, 2019.
[23]      N. K. Dey, Additive manufacturing laser deposition of Ti-6Al-4V for aerospace repair application. Missouri University of Science and Technology, 2014.
[24]      M. H. Farshidianfar, "Real-time closed-loop control of microstructure and geometry in laser materials processing," 2017
[25]      P. Cavaliere, A. Silvello, and A. Perrone, "Additive Manufacturing by Laser Cladding: State of the Art," Laser Cladding of Metals, pp. 9-31, 2021.
[26]      L. J. Kumar and C. K. Nair, "Current trends of additive manufacturing in the aerospace industry," in Advances in 3D printing & additive manufacturing technologies: Springer, 2017, pp. 39-54.
[27]      فرشیدیان­فر، م. ح.، نبوی، س. ف.، "روکش‌کاری لیزری در سال‌های اخیر," مهندسی مکانیکی, vol. 30, no. 2, pp. 69-77, خرداد و تیر 1400 1400.
[28]      G. Pastras, A. Fysikopoulos, C. Giannoulis, and G. J. T. I. J. o. A. M. T. Chryssolouris, "A numerical approach to modeling keyhole laser welding," The International Journal of Advanced Manufacturing Technology, vol. 78, no. 5-8, pp. 723-736, 2015.
[29]      S. Jelvani, R. S. Razavi, M. Barekat, M. R. Dehnavi, M. J. O. Erfanmanesh, and L. Technology, "Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy," Optics & Laser Technology, vol. 120, p. 105761, 2019.
[30]      Z. Li et al., "Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding," Ceramics International, vol. 45, no. 1, pp. 115-121, 2019.
[31]      نبوی، س. ف.، فرشیدیان­فر، الف.، و فرشیدیان­فر، م. ح.، "اساس لیزر و کاربرد آن در صنعت روز،" مجله ی علمی مهندسی مکانیک، علمی ترویجی، دوره 28، صفحات 61 تا 71، سال 1398.
[32]      S. F. Nabavi, M. H. Farshidianfar, A. Farshidianfar, and B. J. O. Beidokhti, "Physical-based methodology for prediction of weld bead characteristics in the Laser Edge Welding process," Optik, vol. 241, p. 166917, 2021.
[33]      W. M. Steen and J. Mazumder, Laser material processing. springer science & business media, 2010.
[34]      M. N. Fesharaki, R. Shoja-Razavi, H. A. Mansouri, and H. Jamali, "Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods," Surface and Coatings Technology, vol. 353, pp. 25-31, 2018.
[35]      E. Toyserkani, A. Khajepour, and S. F. Corbin, Laser cladding. CRC press, 2004.
[36]      G. Turichin, E. Zemlyakov, E. Y. Pozdeeva, J. Tuominen, and P. Vuoristo, "Technological possibilities of laser cladding with the help of powerful fiber lasers," Metal Science and Heat Treatment, vol. 54, no. 3, pp. 139-144, 2012.
[37]      F. Khodabakhshi, M. Farshidianfar, A. Gerlich, M. Nosko, V. Trembošová, and A. Khajepour, "Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels," Additive Manufacturing, vol. 31, p. 100915, 2020.
[38]      M. H. Farshidianfar, A. Khajepour, and A. Gerlich, "Real-time control of microstructure in laser additive manufacturing," The International Journal of Advanced Manufacturing Technology, vol. 82, no. 5-8, pp. 1173-1186, 2016.
[39]      W. D. Callister Jr and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons, 2020.
[40]      M. H. Farshidianfar, "Control of microstructure in laser additive manufacturing," University of Waterloo, 2014.
[41]      R. B. Hetnarski, Encyclopedia of thermal stresses. Springer Netherlands, 2014.
[42]      M. Soodi, "Laser Cladding compared with TIG welding to repair and refurbish railway axles," in CORE 2010, Conference on Railway Engineering, Wellington, New Zealand, 12-15 September, 2010, 2010.
[43]      F. Khodabakhshi, M. Farshidianfar, A. Gerlich, M. Nosko, V. Trembošová, and A. Khajepour, "Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures," Materials Science and Engineering: A, vol. 756, pp. 545-561, 2019.
[44]      Y.-C. Kim, M. Hirohata, M. Murakami, and K. Inose, "Effects of heat input ratio of laser–arc hybrid welding on welding distortion and residual stress," Welding International, vol. 29, no. 4, pp. 245-253, 2015.
[45]      W. M. Steen, "Laser surface treatment," in Laser Material Processing: Springer, 2003, pp. 227-278.
[46]      Y. Huang et al., "Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)," Journal of Materials Processing Technology, vol. 274, p. 116286, 2019.
[47]      G. Muvvala, D. P. Karmakar, and A. K. Nath, "Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy," Optics and Lasers in Engineering, vol. 88, pp. 139-152, 2017.
[48]      J. Powell, P. Henry, and W. Steen, "Laser cladding with preplaced powder: analysis of thermal cycling and dilution effects," Surface engineering, vol. 4, no. 2, pp. 141-149, 1988.
[49]      M. H. Farshidianfar, A. Khajepour, S. Khosravani, and A. Gelrich, "Clad height control in laser cladding using a nonlinear optimal output tracking controller," in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1, pp. 470-479: Laser Institute of America.
[50]      M. H. Farshidianfar, A. Khajepouhor, and A. Gerlich, "Real-time monitoring and prediction of martensite formation and hardening depth during laser heat treatment," Surface and Coatings Technology, vol. 315, pp. 326-334, 2017.
[51]      C. Panwisawas et al., "Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling," Acta materialia, vol. 12, pp. 251-263, 2017.
[52]      M. H. Farshidianfar, F. Khodabakhshi, A. Khajepour, and A. P. Gerlich, "Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition," Materials Science and Engineering: A, vol. 803, p. 140483, 2021.
[53]      M. H. Farshidianfar, "Real-time closed-loop control of microstructure and geometry in laser materials processing," PhD, University of Waterloo, 2017.
[54]      What is Laser Cladding Technology? Available: https://www.twi-global.com/technical-knowledge/faqs/what-is-laser-cladding
[55]      W. Cai, J. Wang, P. Jiang, L. Cao, G. Mi, and Q. Zhou, "Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature," Journal of Manufacturing Systems, vol. 57, pp. 1-18, 2020.
[56]      L. Zhu et al., "Recent research and development status of laser cladding: A review," Optics & Laser Technology, vol. 138, p. 106915, 2021.
[57]      کلاگر، ع. م.، "بررسی ریزساختار و خواص مکانیکی سوپرآلیاژ پایه نیکل IN738LC لایه نشانی شده با لیزر," مهندسی متالورژی، دوره 22، شماره 1، صفحات 52-64، سال 1398.
[58]      A. Singh, A. Ramakrishnan, and G. P. Dinda, "Direct laser metal deposition of eutectic Al-Si alloy for automotive applications," in TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 2017, pp. 71-80: Springer.
[59]      L. Meng, B. Zhu, C. Xian, X. Zeng, Q. Hu, and D. Wang, "Comparison on the wear properties and rolling contact fatigue damage behaviors of rails by laser cladding and laser-induction hybrid cladding," Wear, vol. 458, p. 203421, 2020.
[61]      W. Grzesik, "Hybrid additive and subtractive manufacturing processes and systems: a review," Journal of Machine Engineering, vol. 18, 2018.
[62]      J. R. Lawrence, Advances in laser materials processing: technology, research and applications. Woodhead Publishing, 2017.
[63]      M. Meboldt and C. Klahn, Industrializing additive manufacturing-proceedings of additive manufacturing in products and applications-AMPA2017. Springer, 2017.
[64]      B. Graf, A. Gumenyuk, and M. Rethmeier, "Laser metal deposition as repair technology for stainless steel and titanium alloys," Physics Procedia, vol. 39, pp. 376-381,2012
[65]      M. Froend, V. Ventzke, S. Riekehr, N. Kashaev, B. Klusemann, and J. Enz, "Microstructure and microhardness of wire-based laser metal deposited AA5087 using an Ytterbium fibre laser," Materials Characterization, vol. 143, pp. 59-67, 2018.
[66]      M. Farshidianfar, F. Khodabakhshi, A. Khajepour, and A. Gerlich, "Closed-loop deposition of martensitic stainless steel during laser additive manufacturing to control microstructure and mechanical properties," Optics and Lasers in Engineering, vol. 145, p. 106680, 2021.
[67]      J. Liu, H. Liu, X. Tian, H. Yang, and J. Hao, "Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron," Journal of Alloys and Compounds, vol. 822, p. 153708, 2020.
[68]      Y. Zou, B. Ma, H. Cui, F. Lu, and P. Xu, "Microstructure, wear, and oxidation resistance of nanostructured carbide-strengthened cobalt-based composite coatings on Invar alloys by laser cladding," Surface and Coatings Technology, vol. 381, p. 125-188, 2020.
[69]      D. S. Rickerby and A. Matthews, Advanced surface coatings: a handbook of surface engineering. 1991.
[70]      A. Rashid, "Overview of disc brakes and related phenomena-a review," International journal of vehicle noise and vibration, vol. 10, no. 4, pp. 257-301, 2014.
[71]      M. Shin, K. Cho, S. Kim, and H. Jang, "Friction instability induced by corrosion of gray iron brake discs," Tribology letters, vol. 37, no. 2, pp. 149-157, 2010.
[72]      T. Schopphoven, J. H. Schleifenbaum, S. Tharmakulasingam, and O. Schulte, "Setting Sights on a 3D Process: Extreme high‐speed laser material deposition, or EHLA, is now being developed into an additive manufacturing process," PhotonicsViews, vol. 16, no. 5, pp. 64-68, 2019.
[73]      M. H. Farshidianfar, A. Khajepour, M. Zeinali, and A. Gelrich, "System identification and height control of laser cladding using adaptive neuro-fuzzy inference systems," in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1, pp. 615-623: Laser Institute of America.
[74]      F. ILT. (2014, 9/19/2020). Coating through High-speed Laser Material Deposition. Available: https://www.ilt.fraunhofer.de/content/dam/ilt/en/documents/annual_reports/ar13/AR13_P78.pdf
[75]      T. Schopphoven, A. Gasser, and G. Backes, "EHLA: Extreme High‐Speed Laser Material Deposition: Economical and effective protection against corrosion and wear," Laser Technik Journal, vol. 14, no. 4, pp. 26-29, 2017.
[76]      K. Sertoglu. (2020, 2/13/2021). BILSING AUTOMATION ADOPTS FRAUNHOFER ILT’S DED 3D PRINTING TECHNOLOGY. Available: https://3dprintingindustry.com/news/bilsing-automation-adopts-fraunhofer-ilts-ded-3d-printing-technology-173706/
[77]      L. Nickels, "They do it with lasers," Metal Powder Report, vol. 75, no. 2, pp. 79-81, 2020.
[78]      M. Barbosa, R. Bischoff, W. Strauß, H. Hillig, S. Nowotny, and C. Leyens, "Less CO2 and Fine Dust Emissions in Automotive: High‐power laser cladding as a cost‐effective rotor coating solution," PhotonicsViews, vol. 17, no. 4, pp. 46-49, 2020.
[79]      B. W. Lagow, "Materials Selection in gas turbine engine design and the role of low thermal expansion materials," JOM, vol. 68, no. 11, pp. 2770-2775, 2016.
[80]      J. D. Majumdar and I. Manna, "Laser processing of materials," Sadhana, vol. 28, no. 3, pp. 495-562, 2003.
[81]      M. D. Lijue Xue, Yangsheng Li, Jianyin Chen, Shaodong Wang, and Glen Campbell. (2014). Laser repairing gas turbine engine components. Available: https://www.industrial-lasers.com/surface-treatment/article/16484892/laser-repairing-gas-turbine-engine-components
[82]      A. W. Stephan Kalawrytinos, and Hugues Desmecht. (2011). Laser cladding of worn cylinder bores. Available: https://www.industrial-lasers.com/surface-treatment/article/16485698/laser-cladding-of-worn-cylinder-bores
[83]      J. Mazumder, D. Dutta, N. Kikuchi, and A. Ghosh, "Closed loop direct metal deposition: art to part," Optics and Lasers in Engineering, vol. 34, no. 4-6, pp. 397-414, 2000.
[84]      M. Touri, F. Kabirian, M. Saadati, S. Ramakrishna, and M. Mozafari, "Additive manufacturing of biomaterials− the evolution of rapid prototyping," Advanced Engineering Materials, vol. 21, no. 2, p. 1800511, 2019.
[85]      J. Edgar and S. Tint, "Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing," Johnson Matthey Technology Review, vol. 59, no. 3, pp. 193-198, 2015.
[86]      R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk, "Aerospace applications of laser additive manufacturing," in Laser additive manufacturing: Elsevier, 2017, pp. 351-371.
[87]      C. Hauser. Case Study: Laser Powder Metal Deposition Manufacturing of Complex Real Parts. Available: https://docplayer.net/48458850-Case-study-laser-powder-metal-deposition-manufacturing-of-complex-real-parts.html
[88]      M. Burhan, M. W. Shahzad, D. Ybyraiymkul, S. J. Oh, N. Ghaffour, and K. C. Ng, "Performance investigation of MEMSYS vacuum membrane distillation system in single effect and multi-effect mode," Sustainable Energy Technologies and Assessments, vol. 34, pp. 9-15, 2019.
[89]      J. Ion, Laser processing of engineering materials: principles, procedure and industrial application. Elsevier, 2005.
[90]      P. Cavaliere, Laser Cladding of Metals. Springer, 2021.
[91]      F. A. España, V. K. Balla, S. Bose, and A. Bandyopadhyay, "Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping," Materials Science and Engineering: C, vol. 30, no. 1, pp. 50-57, 2010.
[92]      S. Yang and T. A. Phung, "Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in-situ laser cladding," Optics & Laser Technology, vol. 108, pp. 480-486, 2018.
[93]      L. R. Migliore, Laser Materials Processing. CRC Press, 1996.
[94]      N. Kampanis and I. Hauer, "PROPELLER SHAFT REPAIR FOR A LARGE FERRY WITH THE AID OF LASER CLADDING TECHNIQUE," 2010.
[95]      X. Lei, C. Huajun, L. Hailong, and Z. Yubo, "Study on laser cladding remanufacturing process with FeCrNiCu alloy powder for thin-wall impeller blade," The International Journal of Advanced Manufacturing Technology, vol. 90, no. 5-8, pp. 1383-1392, 2017.
[96]      S. Kaierle et al., "Single-crystal turbine blade tip repair by laser cladding and remelting," CIRP Journal of Manufacturing Science and Technology, vol. 19, pp. 196-199, 2017.
[97]      Y. Ding, R. Liu, J. Yao, Q. Zhang, and L. Wang, "Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces," Surface and Coatings Technology, vol. 329, pp. 97-108, 2017.
[98]      A. Pascu, J. M. Rosca, and E. M. Stanciu, "Laser cladding: from experimental research to industrial applications," Materials Today: Proceedings, vol. 19, pp. 1059-1065, 2019.
[99]      Y. Zhu, Y. Yang, X. Mu, W. Wang, Z. Yao, and H. Yang, "Study on wear and RCF performance of repaired damage railway wheels: Assessing laser cladding to repair local defects on wheels," Wear, vol. 430, pp. 126-136, 2019.
[100]    D. Hu, Y. Liu, H. Chen, and M. Wang, "Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring," Surface and Coatings Technology, vol. 404, p. 126432, 2020.
[101]    D. Hu, Y. Liu, H. Chen, M. Wang, and J. Liu, "Microstructure and properties of in-situ synthesized Ni3Ta-TaC reinforced Ni-based coatings by laser cladding," Surface and Coatings Technology, vol. 405, p. 126599, 2021.
[102]    L. Xue, A. Theriault, M.-U. Islam, M. Jones, and H.-P. Wang, "Laser consolidation of Ti-6Al-4V alloy to build functional net-shape airfoils with embedded cooling channels," in International Congress on Applications of Lasers & Electro-Optics, 2004, vol. 2004, no. 1, p. 1706: Laser Institute of America.
[103]    M. Marya, V. Singh, S. Marya, and J. Y. Hascoet, "Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part," Metallurgical and Materials Transactions B, vol. 46, no. 4, pp. 1654-1665, 2015.