اثر گونۀ باکتری بی‌هوازی کلستریدیوم بر رفتار خوردگی خط لولۀ فولاد میکروآلیاژ API X42 در محلول شبیه‌سازی شدۀ خاک شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مواد، گرایش شناسایی و انتخاب مواد، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 دانشیار، مهندسی مواد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استاد، میکروبیولوژی، گروه زیست‌شناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

در این پژوهش، اثر گونۀ باکتریایی کلستردیدیوم به عنوان یک باکتری بی­هوازی احیا کننده سولفات بر رفتار خوردگی فولاد میکروآلیاژ X42 در محلول شبیه­سازی شده خاک شور آزمایشگاهی طی بازه­های زمانی 3 روز تا 40 روز تحت شرایط تلقیح شده با باکتری مورد ارزیابی قرار گرفت. به این منظور، از یک نمونه خاک حاوی لجن به عنوان منبع تولید باکتری و از یک نمونه خاک شور به عنوان مبنای آنالیز اولیه جهت تولید محلول شبیه­سازی شدۀ خاک شور استفاده شد. رفتار خوردگی و ریزساختار محصولات خوردگی به صورت تابعی از زمان ماندگاری مورد ارزیابی قرار گرفت.بررسی­های ریزساختاری نشانگر تجمع باکتری­ها بر سطح فولاد بعد از 7 روز است. با افزایش زمان ماند تا زمان میانی (21 تا 24 روز)، بیوفیلمی متراکم از مواد پلیمری برون سلولی شکل گرفت. اما پس از آن، بیوفیلم با ظاهری پوسته­ای شکل ظاهر شد که نشان از فررویختن بیوفیلم است. این تغییرات ریزساختاری توام با تغییرات چشمگیر در مقاومت خوردگی بود. مقاومت خوردگی ابتدا به دلیل فعالیت باکتری­های احیا کنندۀ سولفات  از .cm2 ­Ω1019در 3 روز به.cm2 ­Ω274 در 7 روز کاهش یافت. این افزایش سرعت خوردگی، زمینۀ ایجاد بیوفیلم متراکم در دورۀ زمانی میانی را فراهم کرد؛ به نحویکه مقاومت خوردگی به .cm2 ­Ω 7330 در زمان ماندگاری 21 روز افزایش یافت.اما بیوفیلم متراکم محافظ، ناپایدار بوده و به سرعت فرو پاشیدکه در اثر آن مقاومت خوردگی مجدداً کاهش و به مقدار .cm2 ­Ω 480 در زمان ماندگاری 40 روز رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Anaerobic Bacterium Clostridium sp. on the Corrosion Behavior of the API X42MicroalloyedPipeline Steel in Saline Simulated Soil Solution

نویسندگان [English]

  • mojtaba baghalzadeh 1
  • Khalilollah Gheisari 2
  • Hossien H. Motamedi 3
1 MSc student, Department of Materials Science and Engineering, Faculty of Engineering,, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Associate Professor, Department of Materials Science and Engineering, Faculty of Engineering, , Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Professor, Department of Biology, Faculty of Science,, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this study, the effect of bacterium clostridium sp. as ananaerobic sulfate-reducing bacteria on the corrosion behavior ofAPI X42 micro-alloyed pipeline steel was evaluated in a saline simulated soil solution at different immersion times (varying from 3 days to 40 days) under biotic condition. In this process, a soil sample containing sludge was used as a source of production sulfate-reducing bacteria and a saline soil sample was used as the basis of the saline simulated soil solution. The corrosion behavior and microstructure of the corrosion products were evaluated as a function of immersion time. Microstructural examinations show the accumulation of bacteria on the steel surface after 7 days. By further immersed times to the middle times (21-24 days), a biofilm comprised of the dense extracellular polymeric substances was formed. After that, biofilm exfoliation was observed showing physical biofilm breakdown. This microstructural variation is associated with aremarkable variation in corrosion resistance. At first, the corrosion resistance decreases sharply from 1019Ω.cm2at 3 days to 274Ω.cm2at 7 days due to the metabolic bacterial activity. As a result of this high corrosion rate, a densely packed biofilm was formed at the middle times in such a way that corrosion resistance rises sharply to 7330Ω.cm2at 21 days. However, the dense protective biofilm formed at the surface was unstable and biofilm was degraded rapidly; consequently, the corrosion resistance decreases to 480 Ω.cm2at 40 days.

کلیدواژه‌ها [English]

  • Sulfate-reducing bacterium clostridium sp
  • X42 microalloyed steel
  • Biofilm
  • Electrochemical impedance spectroscopy
[1] H. Liu, Y. F. Cheng. Corrosion of initial pits on abandoned X52 pipeline steel in a simulated soil solution containing sulfate-reducing bacteria, Journal of Materials Research and Technology, Vol. 9, No. 4,  2020, Pp. 7180-7189.
[2] Z. Wang, F. Xie, D. Wang, J. Liu, Effect of applied potential on stress corrosion cracking behavior of X80 steel in alkaline soil simulated solution with sulfate-reducing bacteria, Engineering Failure Analysis, Vol. 121, 2021, Pp.105109.
[3] H. LiuY.F. Cheng, Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria, Colloids and Surfaces B: Biointerfaces, Vol. 190, 2020, Pp. 110899.
[4] M. Lv, M. Du, X. Li, Y. Yue, X. Chen, Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria, Journal of Materials Research and Technology, Vol. 8(5), 2019, Pp.4066-4078.
[5] R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation, Corrosion Science, Vol. 127, 2017, Pp. 1–9.
[6] R. Boopathy, L. Daniels, Effect of pH on anaerobic mild steelcorrosion by methanogenic bacteria, Appl Environ Microbiol, Vol. 57, 1991, Pp. 2104–8.
[7] D. Xu, Y. Li, T. Gu, Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, Vol. 110, 2016, Pp. 52–8.
[8] J. Duan, S. Wu, X. Zhang, G. Huang, M. Du, B. Hou, Corrosion ofcarbon steel influenced by anaerobic biofilm in naturalseawater, Electrochim Acta, Vol. 54, 2008, Pp. 22–8.
[9] H. Wang, L.K. Ju, H. Castaneda, G. Cheng, BZ Newby, Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans, Corrosion science, Vol. 89, 2014, Pp. 250–7.
[10] S. Okabe, M. Odagiri, T. Ito, H. Satoh, Succession ofsulfur–oxidizing bacteria in the microbial community on corroding concrete in sewer systems, Applied and environmental microbiology, Vol. 73, 2007, Pp. 971–80.
[11] Z. Shahryari, Kh. Gheisari, H. Motamedi, Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of API X70 microalloyed pipeline steel, Materials Chemistry and Physics, Vol. 236, 2019, Pp. 121799.
[12] Shahryari, Kh. Gheisari, H. Motamedi, Corrosion behavior of API X70 microalloyed pipeline steel in a simulated soil solution in the absence and presence of aerobic Pseudomonas species, Materials Research Express, Vol. 6 (6), 2019, Pp. 065409.
[13] M. Wasim, MB. Djukic, Long-term external microbiologically influenced corrosion of buried cast iron pipes in the presence of sulfate-reducing bacteria (SRB), Engineering Failure Analysis, Vol. 115, 2020, Pp.104657.
[14]  F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra, A. E. Kakpovbia, Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80), International Biodeterioration & Biodegradation, Vol. 78, 2013, Pp. 34-42.
[15] X. Chen, G. Wang, F. Gao, Y. Wang, C. He, Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings, Corrosion Science, Vol. 101, 2015, Pp.1-11.
[16] X. Ping, X. Chao, W. Tao, W. Jing, Zh. Yajun, Chemical and electron microbial influenced corrosion, Journal of Chemical and Pharmaceutical Research, Vol. 5(12), 2013, Pp. 476-481.
[17] B.J Little, J.S. Lee. Microbiologically influenced corrosion. John Wiley & Sons; 2007.
[18] F.M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra, A. E. Kakpovbia, Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field, Journal of materials engineering and performance, Vol. 22, No. 11, 2013, Pp. 3517-3529.
[19] T. Wu, M. Yan, D. Zeng, J. Xu, C. Sun, C. Yu, W. Ke, Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria. Corrosion Science, Vol. 91, 2015, Pp.86-94.
[20] H. Liu, Y.F. Cheng, Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochimica Acta, Vol. 253, 2017, Pp.368-378.
[21] D. Wang, F. Xie, M. Wu, D. Sun, X. Li, J. Ju, The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential, International Journal of Hydrogen Energy, Vol. 42(44), 2017, Pp.27206-27213.
[22] H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu, The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria, Corrosion Science, Vol. 114, 2017, Pp. 102–111.
[23] Q. Li, J. Wang, X. Xing, W. Hu, Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions, Bioelectrochemistry, Vol. 122, 2018, Pp.40-50.
[24] E. Ilhan-Sungur, T. Unsal-Istek, N. Cansever, Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions, Materials Chemistry and Physics, Vol. 162, 2015, Pp. 839-851.
[25] K.A. Kouassi, A.T. Dadie, Z.Y. Nanga, K.M. Dje, Y.G. Loukou, Prevalence of sulfite reducing Clostridium species in barbecued meat in Abidjan, Cote d’Ivoire. Journal of Applied Biosciences, Vol. 38, 2011, Pp. 2518-2522.
[26] F. Kuang, J. Wang, L. Yan, D. Zhang, Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochim Acta, Vol. 52, 2007, Pp. 6084–6088.
 [27] Y. Wan, D. Zhang, H. Liu, Y. Li, B. Hou, Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions, Electrochimica Acta, Vol. 55, No. 5, 2010, Pp.1528-1534.
[28] H. Liu, H, L. Xu, J. Zeng, Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel, British corrosion journal, Vol. 35, 2000, Pp. 131-135.
[29] A. George, microbial reduction of phosphate?, Microbial Diversity project, School of molecular and medical biosciences, Universiiy of wales cardff, Cardff, UK, 1995.
 
[30] C. Sun, J.  Xu, F.  Wang, Interaction of sulfate-reducing bacteria and carbon steel Q 235 in biofilm, Indust. Engineer. Chem. Research, Vol. 50, No. 22,  2011, Pp. 12797-12806.
­[31] R. G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, Electrochemical techniques in corrosion science and engineering. CRC Press, 2002.