تأثیر تغییرات فرکانس در فرآیند رسوب دهی الکتروشیمیایی پالسی بر ترکیب و مورفولوژی پوشش آلیاژ آنتروپی بالای CoCrFeMnNi

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.

2 استادیار، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.

3 استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.

4 استاد، موسسه تحقیق و توسعه ملی فلزات غیر آهنی و کمیاب.

چکیده

در این پژوهش تأثیر تغییر فرکانس پوشش دهی از 2500 به 5000 هرتز در سیکل کاری ثابت 60% بر ترکیب و مورفولوژی سطح پوشش لایه نازک آلیاژ آنتروپی بالای CoCrFeMnNi که به روش رسوب‌دهی الکتروشیمیایی پالسی سنتز شده، مورد بررسی قرار گرفته است. پوشش آلیاژی از یک حمام کلریدی با حلال آلی دی متیل فرم آمید و استونیتریل، بر روی زیر لایه‌ی مسی، حاصل شده است. تغییرات ریزساختار، ترکیب شیمیایی و مورفولوژی پوشش‌ها به ترتیب به کمک پراش پرتو ایکس لایه‌های نازک (GXRD)، طیف سنجی پراش انرژی پرتو ایکس (EDS) و میکروسکوپ الکترونی روبشی (SEM) مورد بررسی قرار گرفته است. نتایج حاصل از آنالیز EDS نشان داد که تمامی عناصر با موفقیت بر روی زیر لایه مسی رسوب داده شده و با تغییر فرکانس اعمالی (2500 به 5000 هرتز) در سیکل کاری ثابت 60 درصد، ترکیب شیمیایی تغییر کرده است؛ در هر دو حالت آنتروپی اختلاط در حدود J/Kmol 12، در محدوده تشکیل آلیاژ آنتروپی بالا، بوده است. نتایج حاصل از آنالیز GXRD، تشکیل ساختار محلول جامد با شبکه FCC را تأیید نمود. در سطح پوشش ایجاد شده در فرکانس 2500 هرتز ذرات به‌ صورت غیر کروی و آگلومره بوده و اندازه کریستالیت­ها در حدود 217 نانومتر محاسبه شده است. مورفولوژی پوشش ایجاد شده در فرکانس 5000 هرتز دارای ترک‌های شاخه‌ای، برآمدگی‌ها و تاول‌های هیدروژنی و همچنین ذرات غیر کروی در سطح پوشش بوده و اندازه کریستالیت­ها در حدود 109 نانومتر اندازه‌گیری شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of frequency changes in pulsed deposition process on the composition and morphology of CoCrFeMnNi high entropy alloy coatings

نویسندگان [English]

  • Fateme Yoosefan 1
  • Ali Ashrafi 2
  • Seyed Mahmoud Monirvaghefi 3
  • Ionut Constantin 4
1 PhD Student, School of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
2 Assistant Professor, School of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
3 Professor, School of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
4 Professor, National R&D Institute for Nonferrous and Rare Metals – IMNR.
چکیده [English]

In this study, the effect of frequency changes from 2500 to 5000 Hz in a %60 constant duty cycle on the composition and surface morphology of CoCrFeMnNi thin film alloy coating surface, synthesized by pulsed electrochemical deposition method, was investigated. Alloy coatings were obtained from chloride bath with organic solvent dimethylformamide (N, N-dimethylformamide) and acetonitrile on a Cu substrate. Microstructure changes, chemical composition and morphology of the coatings were investigated by thin-layer X-ray diffraction (GXRD), X-ray energy diffraction (EDS) and scanning electron microscopy (SEM), respectively. The results of EDS analysis showed that all the elements were successfully deposited on the copper substrate and the chemical composition changed by changing the applied frequency (2500 to 5000 Hz) at a %60 constant duty cycle; in both cases the mixing entropy was about 12 J/K.mol, in the range of high entropy alloy formation. The results of GXRD analysis confirmed the formation of FCC single phase solid solution structure. At the surface of the coating created at a frequency of 2500 Hz, the particles were spherical and agglomerated and the size of the crystallite was calculated at about 217 nm. The morphology of the deposited coat at 5000 Hz has cracks and hydrogen blisters as well as spherical particles on the surface, and the crystallite size was measured at about 109 nm.
d hardness.
 
e nanoparticles was investigated. Cytotoxicity of the nanoparticles on HT29 cancer cells was evaluated. CuFe2O4 copper ferrite nanoparticles were also analyzed by hypothermia method. The results showed a rise in temperature to about 42 ° C and a specific adsorption rate of 9.62 W/g.
 

کلیدواژه‌ها [English]

  • High entropy alloy
  • Thin film coating
  • Pulse electrochemical deposition
  • Chloride bath
  • Organic solvent
1. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
2. Jablonski PD, Licavoli JJ, Gao MC, Hawk JA. Manufacturing of high entropy alloys. Jom. 2015;67(10):2278–87.
3.  Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–23.
4. Yeh J, Chen S, Lin S, Gan J, Chin T, Shun T, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
5. Murty BS, Yeh J-W, Ranganathan S. High-entropy alloys. Butterworth-Heinemann; 2014.
6. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
7. Tasan CC, Deng Y, Pradeep KG, Yao MJ, Springer H, Raabe D. Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. Jom. 2014;66(10):1993–2001.
8. Li H, Sun H, Wang C, Wei B, Yao C, Tong Y, et al. Controllable electrochemical synthesis and magnetic behaviors of Mg–Mn–Fe–Co–Ni–Gd alloy films. J Alloys Compd. 2014;598:161–5.
9. Chenzhong YAO, Bohui WEI, Zhang P, Xihong LU, Peng LIU, Yexiang T. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm. J Rare Earths. 2011;29(2):133–7.
10. Soare V, Burada M, Constantin I, Mitrică D, Bădiliţă V, Caragea A, et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl Surf Sci. 2015;358:533–9.
11. Yao CZ, Zhang P, Liu M, Li GR, Ye JQ, Liu P, et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim Acta. 2008;53(28):8359–65.
12. Brenner A. Electrodeposition of alloys: principles and practice. Elsevier; 2013.
13. Landolt D. Electrodeposition science and technology in the last quarter of the twentieth century. J Electrochem Soc. 2002;149(3):S9–20.
14. Gamburg YD, Zangari G. Theory and practice of metal electrodeposition. Springer Science & Business Media; 2011.
15. Kang J-C, Lalvani SB, Melendres CA. Electrodeposition and characterization of amorphous Fe-Ni-Cr-based alloys. J Appl Electrochem. 1995;25(4):376–83.
16. Dolati AG, Ghorbani M, Afshar A. The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing. Surf Coatings Technol. 2003;166(2–3):105–10.
17. Ramezanzadeh B, Attar MM, Farzam M. Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings. Surf Coatings Technol. 2010;205(3):874–84.
18. Oh J-E, Kim Y-H. The corrosion resistance characteristics of Ni, Mn, and Zn phosphates in automotive body panel coatings. J Ind Eng Chem. 2012;18(3):1082–7.
19. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743–55.
20. Ye Q, Feng K, Li Z, Lu F, Li R, Huang J, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci. 2017;396:1420–6.
21. Yu PF, Zhang LJ, Cheng H, Zhang H, Ma MZ, Li YC, et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics. 2016;70:82–7.
22. Yoosefan F, Ashrafi A, Constantin I. Synthesis of CoCrFeMnNi High Entropy Alloy Thin Films by Pulse Electrodeposition: Part 1: Effect of Pulse Electrodeposition Parameters. Met Mater Int. :1–8.
23. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. Jom. 2014;66(10):1984–92.
24. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
25. Zhou W, Fu LM, Liu P, Xu XD, Chen B, Zhu GZ, et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics. 2017;85:90–7.
26. Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting. Addit Manuf. 2019;28:766–71.
27. Kucza W, Dąbrowa J, Cieślak G, Berent K, Kulik T, Danielewski M. Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J Alloys Compd. 2018;731:920–8.
28. Beke DL, Erdélyi G. On the diffusion in high-entropy alloys. Mater Lett. 2016;164:111–3.
29. Chung C-K, Chang WT. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni–Co films. Thin Solid Films. 2009;517(17):4800–4.
30. Wu J, Johnson CD, Jiang Y, Gemmen RS, Liu X. Pulse plating of Mn–Co alloys for SOFC interconnect applications. Electrochim Acta. 2008;54(2):793–800.
31. Yin K-M, Jan S-L, Lee C-C. Current pulse with reverse plating of nickel-iron alloys in a sulphate bath. Surf Coatings Technol. 1997;88(1–3):219–25.
32. Adelkhani H, Arshadi MR. Properties of Fe–Ni–Cr alloy coatings by using direct and pulse current electrodeposition. J Alloys Compd. 2009;476(1–2):234–7.
33. Bidmeshki C, Abouei V, Saghafian H, Shabestari SG, Noghani MT. Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5% Si alloys. J Mater Res Technol. 2016;5(3):250–8.
34. Bai A, Hu C-C. Effects of electroplating variables on the composition and morphology of nickel–cobalt deposits plated through means of cyclic voltammetry. Electrochim Acta. 2002;47(21):3447–56.
35. Tury B, Lakatos-Varsányi M, Roy S. Ni–Co alloys plated by pulse currents. Surf Coatings Technol. 2006;200(24):6713–7.