ساخت و بررسی سمیت نانو ذرات CuFe2O4 سنتز شده به روش سل ژل احتراقی برای کاربرد هایپرترمیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

2 دانشیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

3 استادیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

چکیده

نانو ذرات مغناطیسی به دلیل منحصر به فرد بودن خواص شیمیایی و فیزیکی و استفاده از آن ها در کاربردهای پزشکی از جمله هایپرترمیا، توجه زیادی را به خود جلب کرده است. در این پژوهش نانو ذرات فریت مس توسط روش سل ژل احتراقی سنتز گردید. محصول بدست آمده توسط پراش اشعه ایکس (XRD)، طیف سنجی تبدیل فوریه مادون قرمز (FTIR)، آزمون جذب و واجذب نیتروژن (BET)، میکروسکوپ الکترونی روبشی (FESEM)، آنالیز عنصری نقطه­ای، و آزمون مغناطیس سنجی نمونه ارتعاشی (VSM) مورد مطالعه قرار گرفت. متوسط اندازه بلورک در حدودnm  8 ± 25 و مساحت سطحی ویژه آن حدودg/m2   20/0 ± 59/2بدست آمد. مورفولوژی و شکل نانو ذرات به صورت کروی و متوسط اندازه نانو ذرات فریت مس حدوداً nm 10 ± 96 اندازه گیری شد. فریت مس دارای خاصیت فری مغناطیس است و مغناطیس اشباع حدود emu/g 28/29 اندازه گیری شد. رهایش داروی ایبوپروفن از این نانوذرات مورد بررسی قرار گرفت. سازگاری سلولی و بحث سمیت سلولی نانو ذرات تولیدی بر روی سلول سرطانی HT29 مورد ارزیابی قرار گرفت.نانو ذرات فریت مس CuFe2O4، توسط روش هایپر ترمیا نیز مورد تجزیه و تحلیل قرار گرفت و افزایش دما تا حدود 42 درجه سانتیگراد و نرخ جذب ویژه ((W/g 62/ 9 بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Investigation of Toxicity of CuFe2O4 Nanoparticles Synthesized by Combustion Sol-Gel Method for Hyperthermia Application

نویسندگان [English]

  • Mahdi Talaei 1
  • Seyed Ali Hassanzadeh Tabrizi 2
  • Ali Saffar Teluri 3
1 M.Sc, Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Associate Professor, Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 Assistant Professor, Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Magnetic nanoparticles have attracted a lot of attention due to their unique chemical and physical properties and their use in medical applications such as hyperthermia. In this research, copper ferrite nanoparticles were synthesized by combustion gel-sol method. The synthesized samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen adsorption and desorption test (BET), energy dispersive spectroscopy (EDS), scanning electron microscopy (FESEM) and vibrational sample magnetometry (VSM). The average crystal size was about 25 ± 8 nm and its specific surface area was about 2.59±0.20 m2/g. Morphology and shape of nanoparticles were spherical and the average size of copper ferrite nanoparticles was about 96 ± 10 nm. Copper ferrite has ferromagnetic properties and saturation magnet was obtained at about 29.28 emu/g. the release of ibuprofen from these nanoparticles was investigated. Cytotoxicity of the nanoparticles on HT29 cancer cells was evaluated. CuFe2O4 copper ferrite nanoparticles were also analyzed by hypothermia method. The results showed a rise in temperature to about 42 ° C and a specific adsorption rate of 9.62 W/g.

کلیدواژه‌ها [English]

  • Magnetic nanoparticles
  • Copper ferrite
  • Sol-gel
  • Cytotoxicity
  • Hyperthermia
[1]           D. Ortega, and Q. A. Pankhurst, “Magnetic hyperthermia,” Nanoscience, vol. 1, no. 60, pp. e88, 2013.
[2]           T. Kobayashi, “Cancer hyperthermia using magnetic nanoparticles,” Biotechnology journal, vol. 6, no. 11, pp. 1342-1347, 2011.
[3]           A. E. Deatsch, and B. A. Evans, “Heating efficiency in magnetic nanoparticle hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 354, pp. 163-172, 2014.
[4]           M. Johannsen, B. Thiesen, P. Wust, and A. Jordan, “Magnetic nanoparticle hyperthermia for prostate cancer,” International Journal of Hyperthermia, vol. 26, no. 8, pp. 790-795, 2010.
[5]           C. S. Kumar, and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Advanced drug delivery reviews, vol. 63, no. 9, pp. 789-808, 2011.
[6]           S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Advances in colloid and interface science, vol. 166, no. 1-2, pp. 8-23, 2011.
[7]           M. T. Peracchia, R. Gref, Y. Minamitake, A. Domb, N. Lotan, and R. Langer, “PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics,” Journal of Controlled Release, vol. 46, no. 3, pp. 223-231, 1997.
[8]           B. Gander, H. P. Merkle, and G. Corradin, Antigen delivery systems: immunological and technological issues: Taylor & Francis, 1998.
[9]           P. Couvreur, C. Dubernet, and F. Puisieux, “Controlled drug delivery with nanoparticles: current possibilities and future trends,” European journal of pharmaceutics and biopharmaceutics, vol. 41, no. 1, pp. 2-13, 1995.
[10]         K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, and B. Al-Najar, “Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies,” Journal of Physics and Chemistry of Solids, vol. 115, pp. 162-171, 2018.
[11]         I. Sharifi, H. Shokrollahi, and S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications,” Journal of magnetism and magnetic materials, vol. 324, no. 6, pp. 903-915, 2012.
[12]         D. E. Rayan, and M. Ismail, “Magnetic Properties and Induction Heating Ability Studies of Spinal Ferrite Nanoparticles for Hyperthermia Treatment of Tumours”,” Egyptian Journal of Biomedical Engineering and Biophysics, vol. 19, no. 1, pp. 51-61, 2018.
[13]         D. Thapa, N. Kulkarni, S. Mishra, P. Paulose, and P. Ayyub, “Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+,” Journal of Physics D: Applied Physics, vol. 43, no. 19, pp. 195004, 2010.
[14]         J. Jiang, G. Goya, and H. Rechenberg, “Magnetic properties of nanostructured CuFe2O4,” Journal of Physics: Condensed Matter, vol. 11, no. 20, pp. 4063, 1999.
[15]         S. M. Hoque, S. Kader, D. Paul, D. Saha, H. Das, M. Rana, K. Chattopadhyay, and M. Hakim, “Effect of Grain Size on Structural and Magnetic Properties of CuFe2O4 Nanograins Synthesized by Chemical Co-Precipitation,” IEEE transactions on magnetics, vol. 48, no. 5, pp. 1839-1843, 2011.
[16]         F. Shi, H. Shan, D. Li, X. Yin, J. Yu, and B. Ding, “A general strategy to fabricate soft magnetic CuFe2O4@ SiO2 nanofibrous membranes as efficient and recyclable Fenton-like catalysts,” Journal of colloid and interface science, vol. 538, pp. 620-629, 2019.
[17]         S. Rostamzadehmansour, M. Seyedsadjadi, and K. Mehrani, “An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application,” Int. J. Bio-Inorg. Hybd. Nanomat, vol. 2, no. 1, pp. 271-280, 2013.
[18]         J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, “CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol,” Chemical engineering journal, vol. 221, pp. 16-24, 2013.
[19]         H. Jiao, G. Jiao, and J. Wang, “Preparation and magnetic properties of CuFe2O4 nanoparticles,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 43, no. 2, pp. 131-134, 2013.
[20]         D. D. Do, Adsorption analysis: equilibria and kinetics: Imperial college press London, 1998.
[21]         J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.
[22]         E. Santamaría, A. Maestro, M. Porras, J. Gutiérrez, and C. González, “Preparation of structured meso–macroporous silica materials: influence of composition variables on material characteristics,” Journal of Porous Materials, vol. 21, no. 3, pp. 263-274, 2014.
[23]         A. Baykal, S. Esir, A. Demir, and S. Güner, “Magnetic and optical properties of Cu1− xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel auto-combustion method,” Ceramics International, vol. 41, no. 1, pp. 231-239, 2015.
[24]         M. Amir, M. Sertkol, A. Baykal, and H. Sözeri, “Magnetic and catalytic properties of Cu x Fe 1− x Fe 2 O 4 nanoparticles,” Journal of Superconductivity and Novel Magnetism, vol. 28, no. 8, pp. 2447-2454, 2015.
[25]         F. Tajfirooz, A. Davoodnia, M. Pordel, M. Ebrahimi, and A. Khojastehnezhad, “Novel CuFe2O4@ SiO2‐OP2O5H magnetic nanoparticles: Preparation, characterization and first catalytic application to the synthesis of 1, 8‐dioxo‐octahydroxanthenes,” Applied Organometallic Chemistry, vol. 32, no. 1, pp. e3930, 2018.
[26]         S. S. Kader, D. P. Paul, and S. M. Hoque, “Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method,” International Journal of Materials, Mechanics and Manufacturing, vol. 2, no. 1, pp. 5-8, 2014.
[27]         S. Kanagesan, M. Hashim, S. AB Aziz, I. Ismail, S. Tamilselvan, N. B. Alitheen, M. K. Swamy, and B. Purna Chandra Rao, “Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method,” Applied Sciences, vol. 6, no. 9, pp. 184, 2016.
[28]         O. Stefanescu, G. Vlase, M. Barbu, P. Barvinschi, and M. Stefanescu, “Preparation of CuFe 2 O 4/SiO 2 nanocomposite starting from Cu (II)–Fe (III) carboxylates embedded in hybrid silica gels,” Journal of thermal analysis and calorimetry, vol. 113, no. 3, pp. 1245-1253, 2013.
[29]         Y.-f. Zhu, J.-l. Shi, Y.-s. Li, H.-r. Chen, W.-h. Shen, and X.-p. Dong, “Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface,” Microporous and Mesoporous Materials, vol. 85, no. 1-2, pp. 75-81, 2005.
[30]         M. Bhushan, Y. Kumar, L. Periyasamy, and A. K. Viswanath, “Fabrication and a detailed study of antibacterial properties of α-Fe2O3/NiO nanocomposites along with their structural, optical, thermal, magnetic and cytotoxic features,” Nanotechnology, vol. 30, no. 18, pp. 185101, 2019.
[31]         K.-J. Lee, J.-H. An, J.-S. Shin, D.-H. Kim, H.-S. Yoo, and C.-K. Cho, “Biostability of γ-Fe2O3 nano particles Evaluated using an in vitro cytotoxicity assays on various tumor cell lines,” Current Applied Physics, vol. 11, no. 3, pp. 467-471, 2011.
[32]         B. Behera, S. Pradhan, A. Samantaray, and D. Pradhan, “Antiproliferative and cytotoxic activity of Hematite (-Fe2O3) nanoparticles from Butea monosperma on MCF-7 Cells,” African Journal of Pharmacy and Pharmacology, vol. 14, no. 2, pp. 29-40, 2020.