ساخت پوسته ی مخروطی مسی با استفاده از فرآیند الکتروفرمینگ و بررسی پارامترهای موثر بر فرآیند ساخت آن از طریق شبیه سازی عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 دانشکده مهندسی مکانیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

4 دانشیار، دانشکده مهندسی مکانیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

5 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

هدف از این پژوهش نشان دادن مزایای شبیه سازی رایانه ای و مطالعات پارامتری در بهبود فرآیند الکتروفرمینگ مس می باشد. برای این منظور مدل المان محدود برای یک هندسه مخروطی شکل با استفاده از نرم افزار کامسول تهیه و اثر پارامترهای کلیدی شامل دانسیته ی جریان اعمالی، هدایت الکتریکی محلول، فاصله ی الکترودها، و طول آند، بر میزان یکنواختی ضخامت بررسی شد. به منظور صحت سنجی مدل، یک پوسته ی مخروطی شکل در آزمایشگاه به روش الکتروفرمینگ تولید، و توزیع ضخامت در آن با نتایج حاصل از شبیه سازی مقایسه شد. مقایسه ی نتایج نشان داد برای شبیه سازی فرآیند الکتروفرمینگ، استفاده از مدل توزیع جریان سه گانه ، یک مدل دقیق و کارآمد است و می توان از آن برای مطالعات پارامتری استفاده کرد. در نهایت پس از مطالعه ی پارامتری مشخص شد همه ی متغیرهای انتخاب شده تاثیر قابل توجهی بر ضخامت کلی ایجاد شده و میزان یکنواختی ضخامت دارند. علاوه بر این مشخص شد که دانسیته ی جریان اعمالی بیش ترین و فاصله ی الکترود ها کمترین اثر را بر مقدار ضخامت و یکنواختی آن دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Copper Cone Shell production Using Electroforming Process and Investigating Parameters Effect on the Process by the use of Numerical Simulation

نویسندگان [English]

  • Hamid Heydari Pebdani 1
  • Hossein Mehman navaz 2
  • Gholamhossein Liaghat 3
  • Sadegh Rahmati 4
  • Hamid Fazeli 5
1 Department of chemical and petroleum engineering, Sharif university of technology, Tehran, Iran
2 mechanical engineering department, Islamic Azad University, Science and Research Branch, Tehran, Iran
3 Professor, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
4 Associate Professor, Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran.
5 Associate Professor, Department of Mechanical Engineering, Malek-Ashtar University of Technology, Tehran, Iran.
چکیده [English]

The purpose of this study is to demonstrate the advantages of computer simulation and parametric studies in improving the copper electroforming process. For this purpose, the finite element model for a cone geometry was prepared using the Comsol software, and the effect of key parameters including applied current density, solution electrical conductivity, electrode spacing, and anode length, on the thickness uniformity. In order to validate the model, a conical shell was produced in the laboratory by electroforming method, and the thickness distribution was compared with the simulation results. The comparison of the results showed that using the tertiary current distribution method to simulate the electroforming process is a precise and efficient model and can be used for parametric studies. Finally, after parametric study, it was determined that all selected variables had a significant effect on the thickness uniformity. In addition, it was found that the most to least significant variables were applied current density, solution conductivity, anode-cathode spacing, and anode length, respectively.

کلیدواژه‌ها [English]

  • electroforming
  • numerical simulation
  • Finite element modeling
  • thickness distribution
  • electroplating
[1]         J. R. Davis, Copper and copper alloys. ASM international, 2001.
[2]         W. Blum and G. B. Hogaboom, “Principles of Electroplating and Electroforming (electrotyping),” 1949.
[3]         A. D. G. Murrell, “A Study of Testing Different Mandrels for Electroforming Nickel.” Tennessee Technological University, 2017.
[4]         J. A. McGeough, “Electroforming,” in CIRP Encyclopedia of Production Engineering, Springer, 2014, pp. 443–446.
[5]         X.-Q. Yin et al., “Mechanical properties and microstructure of rolled and electrodeposited thin copper foil,” Rare Met., vol. 35, no. 12, pp. 909–914, 2016.
[6]         I. Mladenović, J. Lamovec, V. Jović, and V. Radojević, “Synergetic effect of additives on the hardness and adhesion of thin electrodeposited copper films,” Serbian J. Electr. Eng., vol. 14, no. 1, pp. 1–11, 2017.
[7]         S. Banthia, S. Sengupta, M. Mallik, S. Das, and K. Das, “Substrate effect on electrodeposited copper morphology and crystal shapes,” Surf. Eng., pp. 1–8, 2017.
[8]         J. Niu et al., “Effect of Electrodeposition Parameters on the Morphology of Three-Dimensional Porous Copper Foams,” Int. J. Electrochem. Sci., vol. 10, pp. 7331–7340, 2015.
[9]         A. Nevers, L. Hallez, F. Touyeras, and J.-Y. Hihn, “Effect of ultrasound on silver electrodeposition: Crystalline structure modification,” Ultrason. Sonochem., vol. 40, pp. 60–71, 2018.
[10]       I. Belov, C. Zanella, C. Edström, and P. Leisner, “Finite element modeling of silver electrodeposition for evaluation of thickness distribution on complex geometries,” Mater. Des., vol. 90, pp. 693–703, 2016.
[11]       M. Rosales and J. L. Nava, “Simulations of Turbulent Flow, Mass Transport, and Tertiary Current Distribution on the Cathode of a Rotating Cylinder Electrode Reactor in Continuous Operation Mode during Silver Deposition,” J. Electrochem. Soc., vol. 164, no. 11, pp. E3345–E3353, 2017.
[12]       C. T. J. Low, E. P. L. Roberts, and F. C. Walsh, “Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell,” Electrochim. Acta, vol. 52, no. 11, pp. 3831–3840, 2007.
[13]       T. Pérez and J. L. Nava, “Numerical simulation of the primary, secondary and tertiary current distributions on the cathode of a rotating cylinder electrode cell. Influence of using plates and a concentric cylinder as counter electrodes,” J. Electroanal. Chem., vol. 719, pp. 106–112, 2014.
[14]       N. Obaid, R. Sivakumaran, J. Lui, and A. Okunade, “Modelling the Electroplating of Hexavalent Chromium,” in COMSOL Conference. Boston2013, 2013.
[15]       T. Elshenawy, S. Soliman, and A. Hawwas, “Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application,” Def. Technol., vol. 13, no. 6, pp. 439–442, 2017.
[16]       M. Carpinella, M. I. Velasco, E. V Silletta, J. M. Ovejero, S. A. Dassie, and R. H. Acosta, “Determination of flow patterns in a rotating disk electrode configuration by MRI,” J. Electroanal. Chem., vol. 750, pp. 100–106, 2015.
[17]       M. C. Devi, L. Rajendran, A. Bin Yousaf, and C. Fernandez, “Non-linear Differential Equations and Rotating Disc Electrodes: Pade approximationTechnique,” Electrochim. Acta, vol. 243, pp. 1–6, 2017.
[18]       M. Robison and M. L. Free, “Modeling and experimental validation of electroplating deposit distributions from copper sulfate solutions,” ECS Trans., vol. 61, no. 21, pp. 27–36, 2014.
[19]       L. Tong, “Tertiary current distributions on rotating electrodes,” in Proceedings of the COMSOL Conference, 2011.
[20]       M. Eisenberg, C. W. Tobias, and C. R. Wilke, “Ionic mass transfer and concentration polarization at rotating electrodes,” J. Electrochem. Soc., vol. 101, no. 6, pp. 306–320, 1954.
[21]       C. Madore, M. Matlosz, and D. Landolt, “Experimental investigation of the primary and secondary current distribution in a rotating cylinder Hull cell,” J. Appl. Electrochem., vol. 22, no. 12, pp. 1155–1160, 1992.
[22]       A. Giaccherini et al., “Finite elements analysis of an electrochemical coating process of an irregularly shaped cathode with COMSOL Multiphysics®,” ECS Trans., vol. 64, no. 35, pp. 1–8, 2015.
[23]       C. M. U. Guide, “Version 5.2, COMSOL Inc.,(2016),” Google Sch.
[24]       A. Shukla, “Modeling and measuring electrodeposition parameters near electrode surfaces to facilitate cell performance optimization.” Department of Metallurgical Engineering, University of Utah, 2013.
[25]       N. D. Nikolić, K. I. Popov, L. J. Pavlović, and M. G. Pavlović, “Morphologies of copper deposits obtained by the electrodeposition at high overpotentials,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 560–566, 2006.