سنتز خودپیشرونده دما بالای کاربید تیتانیم آلومینیم به کمک فعال‌سازی مکانیکی

نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده نیمه هادی ها، پژوهشگاه مواد و انرژی، کرج، ایران

چکیده

سنتز خودپیشرونده دما بالای کاربید تیتانیم آلومینیم به کمک فعال‌سازی مکانیکی
نویسندگان: مریم اخلاقی، سیدعلی طیبی‌فرد، اسمعیل صلاحی، مهدی شاهدی اصل، گرت اشمیت
نویسنده مسیول: مریم اخلاقی
در پژوهش حاضر، سنتز ترکیب سه‌تایی Ti3AlC2 با استفاده از مواد اولیه تیتانیم، آلومینیم و گرافیت به روش سنتز خودپیشرونده دما بالای فعال‌شده مکانیکی انجام شد. سنتز این ترکیب در مد انفجار حرارتی با استفاده از مواد اولیه به نسبت Ti:Al:C=3:1:2 در کوره تیوبی انجام گرفت و سازوکار تشکیل این ترکیب بررسی شد. مشخصه‌یابی محصول سنتز به کمک گرماسنجی افتراقی، میکروسکوپ‌های الکترونی روبشی و عبوری و پراش پرتو ایکس انجام شد. هر چند ترکیب Ti3AlC2، به‌عنوان فاز اصلی محصول سنتز شناسایی شد، تشکیل محصول جانبی TiC در کنار فاز اصلی نیز اجتناب ناپذیر بود. بررسی‌ها نشان داد که تشکیل ترکیب‌های TiC و TiAl نقش اساسی در سنتز خودپیشرونده دما بالای فاز Ti3AlC2 دارد.
کلیدواژه: فعال‌سازی مکانیکی، سنتز خودپیشرونده دما بالا، فاز مکس، Ti3AlC2.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Ti3AlC2 MAX phase by MASHS

نویسنده [English]

  • Maryam Akhlaghi
Semiconductors Department, Materials and Energy Research Center (MERC), Karaj, Iran
چکیده [English]

Synthesis of Ti3AlC2 MAX phase by MASHS
Maryam Akhlaghia, Seyed Ali Tayebifarda, Esmaeil Salahib, Mehdi Shahedi Aslc, Gert Schmidtd
Titanium aluminum carbide was prepared employing mechanically activated self-propagating high-temperature synthesis process. The formation mechanism of Ti3AlC2 MAX phase using elemental titanium, aluminum and carbon (graphite) powders synthesized via two different preparation methods, wave propagation and thermal explosion synthesis techniques, were investigated. The combustion reaction products were characterized by differential thermal analysis, scanning electron microscopy and X-ray diffraction analysis. Although Ti3AlC2 was recognized as the dominant synthesis product, in both techniques, the formation of TiC was also verified as a byproduct. The MAX phase produced in the tubular furnace (thermal explosion mode) was purer than that synthesized in the reaction chamber (wave propagation mode). The results disclosed that the formation of TiC and TiAl compounds have significant roles on the combustion synthesis of Ti3AlC2 MAX phase.
Keywords: Mechanical activation, Self-propagating high-temperature synthesis, MAX phase, Ti3AlC2.

کلیدواژه‌ها [English]

  • Mechanical activation
  • Self-propagating high-temperature synthesis
  • MAX phase
  • Ti3AlC2
1.         Barsoum M, El-Raghy T. The MAX Phases: Unique New Carbide and Nitride Materials. Am.Sci.2001;89(4):334.Available from: http://www.americanscientist.org/issues/feature/2001/4/the-max-phases-unique-new-carbide-and-nitride-materials
2.         Wu L, Chen J, Liu M, Bao Y, Zhou Y. Reciprocating friction and wear behavior of Ti3AlC2 and Ti3AlC2/Al2O3 composites against AISI52100 bearing steel. Wear 2009;266(1–2):158–66. Available from: https://www.sciencedirect.com/science/article/abs/pii/S004316480800327X
3.         Zhu JF, Qi GQ, Wang F, Yang HB. Synthesis of Ti3AlC2/Al2O3 nanopowders by mechano-chemical reaction. Adv Powder Technol. 2010(5):578–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0921883110000579
4.         Ai T, Wang F, Feng X, Ruan M. Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceram Int. 2014;40(7):9947–53. Available from: https://www.sciencedirect.com/science/article/pii/S0272884214002910
5.         Wu H, Fan GH, Cui XP, Geng L, Yuan F, Pang JC, et al. Mechanical properties of (Ti2AlC+Ti3AlC)–TiAl ceramic–intermetallic laminate (CIL) composites. Mater Sci Eng A. 2013;585:439–43. Available from: https://www.sciencedirect.com/science/article/pii/S0921509313008551
6.         Yeh CL, Kuo CW, Chu YC. Formation of Ti3AlC2/Al2O3 and Ti2AlC/Al2O3 composites by combustion synthesis in Ti–Al–C–TiO2 systems. J Alloys Compd. 2010;494(1–2):132–6. Available from: https://www.sciencedirect.com/science/article/pii/S0925838810000769
7.         Zhu JF, Ye L, He LH. Effect of Al2O3 on the microstructure and mechanical properties of Ti3AlC2/Al2O3 in situ composites synthesized by reactive hot pressing. Ceram Int. 2012;38(7):5475–9. Available from: https://www.sciencedirect.com/science/article/pii/S0272884212002763
8.         Pietzka MA, Schuster JC. Summary of constitutional data on the Aluminum-Carbon-Titanium system. J Phase Equilibria. 1994(4):392–400. Available from: http://link.springer.com/10.1007/BF02647559
9.         Tzenov N V., Barsoum MW. Synthesis and Characterization of Ti3AlC2. J Am Ceram Soc. 2004;83(4):825–32. Available from: http://doi.wiley.com/10.1111/j.1151-2916.2000.tb01281.x
10.       Tzenov N V., Barsoum MW. Synthesis and Characterization of Ti3AlC2. J Am Ceram Soc. 2004;83(4):825–32. Available from: http://doi.wiley.com/10.1111/j.1151-2916.2000.tb01281.x
11.       Wang X, Zhou Y. Solid–liquid reaction synthesis of layered machinable Ti3AlC2ceramic. J Mater Chem. 2002;12(3):455–60. Available from: http://xlink.rsc.org/?DOI=b108685e
12.       Hendaoui A, Andasmas M, Amara A, Benaldjia A, Langlois P, Vrel D. SHS of high-purity MAX compounds in the Ti-Al-C system. Int J Self-Propagating High-Temperature Synth. 2008;17(2):129–35. Available from: http://www.springerlink.com/index/10.3103/S1061386208020088
13.       Gaffet E, Charlot F, Klein D, Bernard F, Niepce JC. Mechanically Activated SHS Reaction in the Fe-Al System: In Situ Time Resolved Diffraction Using Synchrotron Radiation. Mater Sci Forum. 1998;269–272(January 1998):379–84.
14.       Khoptiar Y, Gotman I, Gutmanas EY. Pressure-Assisted Combustion Synthesis of Dense Layered Ti3AlC2 and its Mechanical Properties. J Am Ceram Soc. 2004;88(1):28–33. Available from: http://doi.wiley.com/10.1111/j.1551-2916.2004.00012.x
15.       Zhu G, Wang W, Wang R, Zhao C, Pan W, Huang H, et al. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis. Materials (Basel). 2017;10(9):1007. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28850088
16.       Subrahmanyam J, Vijayakumar M. Self-propagating high-temperature synthesis. J Mater Sci. 1992;27(23):6249–73. Available from: http://link.springer.com/10.1007/BF00576271
17.       Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71. Available from: http://scripts.iucr.org/cgi-bin/paper?S0021889869006558
18.       Zakeri M, Ramezani M. Synthesis of MoSi2–TiC nanocomposite powder via mechanical alloying and subsequent annealing. Ceram Int. 2012;38(2):1353–7. Available from: https://www.sciencedirect.com/science/article/pii/S0272884211007863
19.       Zhou A, Wang C, Ge Z, Wu L. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis. J Mater Sci Lett. 2001;20:1971–3.
20.       Łopaciński M, Puszynski J, Lis J. Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique. J Am Ceram Soc. 2001;84(12):3051–3. Available from: http://doi.wiley.com/10.1111/j.1151-2916.2001.tb01138.x
21.       Ge Z, Chen K, Guo J, Zhou H, Ferreira J. Combustion synthesis of ternary carbide Ti3AlC2 in Ti–Al–C system. J Eur Ceram Soc. 2003;23(3):567–74. Available from: https://www.sciencedirect.com/science/article/pii/S0955221902000985
22.       Liu G, Chen K, Zhou H, Guo J, Ren K, Ferreira J. Layered growth of Ti2AlC and Ti3AlC2 in combustion synthesis. Mater Lett. 2007;61(3):779–84.
23.       Yeh CL, Shen YG. Combustion synthesis of Ti3AlC2 from Ti/Al/C/TiC powder compacts. J Alloys Compd. 2008;466(1–2):308–13. Available from: https://www.sciencedirect.com/science/article/pii/S0925838807021482
24.       Saidi A, Chrysanthou A, Wood J V., Kellie JLF. Characteristics of the combustion synthesis of TiC and Fe-TiC composites. J Mater Sci. 1994;29(19):4993–8. Available from: http://link.springer.com/10.1007/BF01151089
25.       Shahedi Asl M, Sabahi Namini A, Motallebzadeh A, Azadbeh M. Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater Chem Phys. 2018;203:266–73. Available from: https://www.sciencedirect.com/science/article/pii/S0254058417307708
26.       Sabahi Namini A, Azadbeh M, Shahedi Asl M. Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites. Adv Powder Technol. 2017;28(6):1564–72. Available from: https://www.sciencedirect.com/science/article/pii/S0921883117301401
27.       Sun HY, Kong X, Yi ZZ, Wang QB, Liu GY. The difference of synthesis mechanism between Ti3SiC2 and Ti3AlC2 prepared from Ti/M/C (M=Al or Si) elemental powders by SHS technique. Ceram Int. 2014;40(8):12977–81. Available from: https://www.sciencedirect.com/science/article/pii/S0272884214007147
28.       Zou Y, Sun Z, Tada S, Hashimoto H. Rapid synthesis of single-phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture. Scr Mater. 2007;56(9):725–8. Available from: https://www.sciencedirect.com/science/article/pii/S1359646207000796
29.       Sedghi A, Vahed R. EFFECT OF FABRICATION PARAMETERS ON SYNTHESIS OF Ti2AlC AND Ti3AlC2MAX PHASES BY MASHS. Iran J Mater Sci Eng. 2014;11(4):40–7. Available from: http://ijmse.iust.ac.ir/browse.php?a_id=720&sid=1&slc_lang=en
30.       Mohammad H, Mina SH, Hamid Reza B, Naser E. The review on the applications of MAX phase nano structured materials. Vol. 01. 2016. Available from: https://www.civilica.com/Paper-ISON01-ISON01_013.html
31.       Foratirad H, Baharvandi HR, Maragheh MG. Synthesis of nanolayered Ti3SiC2 MAX phase via infiltration of porous TiC preform produced by the gelcasting process. Mater Lett. 2016;180:219–22. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0167577X16309478
32.       Mohammad H, Mina SH, Hamid Reza B, Naser E. Crystal structure and mechanical properties of MAX phase nano structured materials. Vol. 01. 2016. Available from: https://en.civilica.com/Paper-ISON01-ISON01_054=Crystal-structure-and-mechanical-properties-of-MAX-phase-nano-structured-materials.html