بررسی سینتیک تبلور شیشه فلز حجیم Au50Cu25.5Ag7.5Si17 تحت گرمایش پیوسته و هم دما

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی متالورژی و مواد دانشگاه تهران

چکیده

در پژوهش حاضر رفتار سینتیکی فلز شیشه‌ای حجیم پایه طلا با ترکیب Au50Cu25.5Ag7.5Si17 (at%) در محدوده مذاب فوق تبرید شده مورد بررسی قرار گرفت. سینتیک استحاله شیشه‌ای شدن و تبلور این آلیاژ شیشه‌ای تحت شرایط گرمایش پیوسته ( غیر هم‌دما) و هم‌دما توسط گرماسنجی روبشی افتراقی بررسی شد. نتایج حاکی از وقوع تبلور یک مرحله‌ای در آلیاژ طی گرمایش پیوسته است. نتایج نشان داد که دمای تبلور و شیشه‌ای شدن تابعی از نرخ گرمایش هستند. تحت شرایط غیر هم‌دما، انرژی‌های اکتیواسیون مرتبط با دماهای مشخصه توسط رابطه کیسینجر محاسبه شدند. . مقدار انرژی اکتیواسیون برای هر یک از استحاله‌های تحول شیشه، تبلور و پیک تبلور به ترتیب 246، 183 و 161 kJ/mol به دست آمده است. مقادیر انرژی‌های اکتیواسیون محاسبه شده حاکی از بیشتر بودن انرژی لازم برای تحول شیشه نسبت به تبلور است. مکانیسم تبلور تحت شرایط هم‌دما توسط رابطه جانسون – مل – اورامی بررسی شد. مقدار توان اورامی در بازه 1 تا 6/1 محاسبه شد که نشان دهنده جوانه‌زنی ناهمگن ذرات با حجم قابل توجه در آغاز تحول می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Crystallization Kinetics Of Au50Cu25.5Ag7.5Si17 Bulk Metallic Glass Under Continuous and Isothermal Heating

نویسندگان [English]

  • Maryam Rahimi-Chegeni
  • Mahmoud Nili-Ahmadabadi
  • Mahdi Malekan
School of Metallurgy and Materials Engineering, University of Tehran
چکیده [English]

In this study, the kinetic of Au-based BMG (Au50Cu25.5Ag7.5Si17 (at%)) at high temperature in supercooled liquid region was investigated Crystallization kinetics of this amorphous alloy under non-isothermal (continuous heating) and isothermal conditions were investigated by differential scanning calorimetry (DSC). The results show that crystallization in this bulk metallic glass has one stage crystalline precipitation process during continuous heating. It was found that glass transition and crystallization kinetics are the function of continuous heating rate. Under non-isothermal conditions, activation energies corresponding to the characteristic temperatures were estimated by Kissinger equation. The calculated activation energies of glass transition, onset of crystallization and crystallization peak temperature are 246,183 and 161 kJ/mol respectively. These activation energies revealed that the energy barrier for the glass transformation is higher than that for crystallization. The crystallization mechanism under isothermal condition was investigated by using Johnson – Mehl – Avrami (JMA) equation. The Avrami exponent is mainly in the range of 1 to 1.6, which indicates heterogeneous nucleation with significant volume at the beginning of the transformation.

کلیدواژه‌ها [English]

  • Bulk Metallic Glass
  • Crystallization kinetics
  • Activation Energy
  • Kissinger method
  • Johnson – Mehl – Avrami method
[1]    W. Klement, R. H. Willens, and P. Duwez, “Non-crystalline structure in solidified Gold-Silicon alloys,” Nature, vol. 187, no. 4740,
pp. 869–870, 1960.

[2]    H. W. Kui, A. L. Greer, and D. Turnbull, “Formation of bulk metallic glass by fluxing,” Appl. Phys. Lett., vol. 45, no. 6, pp. 615–616, Sep. 1984.

[3]    N. Nishiyama and A. Inoue, “Glass-Forming Ability of Bulk Pd40Ni10Cu30P20 Alloy,” Mater. Trans. JIM, vol. 37, no. 10,
pp. 1531–1539, 1996.

[4]    A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, “Al-L-Cu Amorphous Alloys with a Wide Supercooled Liquid Region,” Mater. Trans. JIM, vol. 31, no. 2, pp. 104–109, 1990.

[5]    A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5,” Appl. Phys. Lett., vol. 63, no. 17, pp. 2342–2344, Oct. 1993.

[6]    Z. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, “Structural Amorphous Steels,” Phys. Rev. Lett., vol. 92, no. 24, p. 245503, Jun. 2004.

[7]    P. Wesseling, T. G. Nieh, W. H. Wang, and J. J. Lewandowski, “Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass,” Scr. Mater., vol. 51, no. 2,
 pp. 151–154, Jul. 2004.

[8]    J. L. Soubeyroux, S. Gorsse, and G. Orveillon, “Glass Formation Range of Mg-Based Bulk Metallic Alloys,” Mater. Sci. Forum, vol. 539–543,
pp. 2018–2025, Mar. 2007.

[9]    J. Schroers and W. L. Johnson, “Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system,” Appl. Phys. Lett., vol. 84,
no. 18, pp. 3666–3668, May 2004.

[10]  J. Schroers and W. L. Johnson, “Ductile Bulk Metallic Glass,” Phys. Rev. Lett., vol. 93, no. 25, p. 255506, Dec. 2004.

[11]  H. S. Chen and D. Turnbull, “THERMAL EVIDENCE OF A GLASS TRANSITION IN GOLD‐SILICON‐GERMANIUM ALLOY,” Appl. Phys. Lett., vol. 10, no. 10, pp. 284–286, May 1967.

[12]  J. Schroers, B. Lohwongwatana, W. L. Johnson, and A. Peker, “Gold based bulk metallic glass,” Appl. Phys. Lett., vol. 87, no. 6, p. 061912, Aug. 2005.

[13]  W. Zhang, H. Guo, M. W. Chen, Y. Saotome, C. L. Qin, and A. Inoue, “New Au-based bulk glassy alloys with ultralow glass transition temperature,” Scr. Mater., vol. 61, no. 7, pp. 744–747, Oct. 2009.

[14]  V. . Raju et al., “Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti,” Mater. Lett., vol. 57, no. 1, pp. 173–177, Nov. 2002.

[15]  J. Wu, Y. Pan, and J. Pi, “On non-isothermal kinetics of two Cu-based bulk metallic glasses,” J. Therm. Anal. Calorim., vol. 115, no. 1, pp. 267–274,
Jan. 2014.

[16]  J. C. Qiao and J. M. Pelletier, “Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC),” J. Non. Cryst. Solids, vol. 357, no. 14, pp. 2590–2594, Jul. 2011.

[17]  N. S. Saxena, “ACTIVATION ENERGY OF CRYSTALLIZATION AND ENTHALPY,” vol. 6, no. 3, pp. 97–107, 2009.

[18]  Y. J. Yang et al., “Crystallization kinetics of a bulk amorphous Cu–Ti–Zr–Ni alloy investigated by differential scanning calorimetry,” J. Alloys Compd.,
 vol. 415, no. 1–2, pp. 106–110, May 2006.

[19]  H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, Nov. 1957.

[20]  C. X. Hu, G. L. Li, and Y. Shi, “Crystallization Kinetics of the Cu47.5Zr47.5Al5 Bulk Metallic Glass under Continuous and Iso-Thermal Heating,” Appl. Mech. Mater., vol. 99–100, pp. 1052–1058, Sep. 2011.

[21]  H.-R. Wang, Y.-L. Gao, G.-H. Min, X.-D. Hui, and Y.-F. Ye, “Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region,” Phys. Lett. A, vol. 314, no. 1–2, pp. 81–87, Jul. 2003.

[22]  S. Venkataraman, E. Rozhkova, J. Eckert, L. Schultz, and D. J. Sordelet, “Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement,” Intermetallics, vol. 13, no. 8, pp. 833–840, Aug. 2005.

[23]  X. . Lu and J. . Hay, “Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate),” Polymer (Guildf)., vol. 42, no. 23,
pp. 9423–9431, Nov. 2001.

[24]  C. V. Thompson, A. L. Greer, and F. Spaepen, “Crystal nucleation in amorphous (Au100 − yCuy)77Si9Ge14 alloys,” Acta Metall., vol. 31, no. 11, pp. 1883–1894, Nov. 1983.

[25]  S. Scudino, S. Venkataraman, and J. Eckert, Thermal stability, microstructure and crystallization kinetics of melt-spun Zr-Ti-Cu-Ni metallic glass,
vol. 460. 2008.

[26]  L.-C. Zhang, J. Xu, and J. Eckert, “Thermal stability and crystallization kinetics of mechanically alloyed TiC∕Ti-based metallic glass matrix composite,” J. Appl. Phys., vol. 100, no. 3, p. 033514, Aug. 2006.