سنتز و مشخصه یابی نانوذرات مغناطیسی مگنتیت عاملدارشده باآلکیل(Fe3O4@TMOS)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پژوهشکده مواد مغناطیسی پیشرفته، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران. دانشکده زیست‌شناسی دانشگاه تهران

2 دکتری، پژوهشکده مواد مغناطیس یپیشرفته، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران. دانشکده زیست‌شناسی دانشگاه تهران.

3 استاد؛ پژوهشکده مواد مغناطیسی پیشرفته، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران،

4 استاد، دانشکده زیست‌شناسی دانشگاه تهران،

5 کارشناسی ارشد، پژوهشکده مواد مغناطیس یپیشرفته، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران. دانشکده زیست‌شناسی دانشگاه تهران،

چکیده

امروزه شاهد توجه روزافزون بر اهمیت و کاربردهای نانوذرات مغناطیسی در فناوری‌های زیستی، پزشکی و دارورسانی از رهگذر اصلاح سطح آن‌ها، هستیم. ازجمله، باهدفتأمین شرایط برقراری برهم‌کنش‌های آب‌گریز نانوذرات مزبور با ساختارهای هدف، سنتز نانو‌ذرات مغناطیسی مگنتیت (Fe3 O4) عاملدار شده با ماده آلکیل کننده 18 کربنی تری‌متوکسی‌اکتا‌دسیل‌سیلان(Fe3 O4@TMOS)با روش همرسوبی شیمیایی (سنتز هسته مگنتیت) و مخلوطسازی شیمیایی)عامل‌دار کردن هسته مگنتیت با آلکیل) انجام شد. نانو‌ذرات سنتز شدهبه‌وسیلهآنالیزهای مبتنی بر دستگاه‌های میکروسکوپ الکترونی روبشی (SEM)، طیف‌سنجی تبدیل فوریهمادون‌قرمز(FT-IR)، تفرق اشعه ایکس (XRD)، مغناطیس‌سنج ارتعاشی (VSM) و آنالیز عناصرCHNS مشخصه‌یابی شدند.بنابر آنالیزVSM، مغناطیس اشباع نانوذرات Fe3 O4@TMOS سنتز شده39.7emu/g و پسماند مغناطیسی و وادارندگی مغناطیسی حدود صفر بدست آمد و درنتیجه خاصیت سوپر پارامغناطیسی نانو‌ذرات تائید شد. همچنین نتایج حاصل از آزمونXRD نشان داد که هسته نانوذرات سنتز شده مگنتیت استوبرمبنایتخمین توزیع اندازه توسط نرم‌افزار ImageJ مبتنی بر تصاویر بدست آمده از SEM، میانگین اندازه هسته و نانوذره نهائی به ترتیب 52 و 62.82 نانومتر محاسبه شد. دو آزمونCHNSوFTIRنیز مؤید وجود گروه‌های عاملی آلکیل 18 کربنه روی نانوذرات است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and characterization of Functionalized magnetite nanoparticles by alkyl group (Fe3O4@TMOS)

نویسندگان [English]

  • VAHID ALIMOHAMMADI 1
  • faezeh Kashanian 2
  • S. A. Seyyed Ebrahimi 3
  • Mehran Habibi Rezaei 4
  • Alireza Bagherpour 5
1 M.Sc. Student, Advanced Magnetic Materials Research center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, School of Biology, College of Science, University of Tehran,
2 PhD, School of Biology, College of Science, University of Tehran, Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran,
3 Professor, Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran
4 Professor, School of Biology, College of Science, University of Tehran,
5 M.Sc., Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, School of Biology, College of Science, University of Tehran,
چکیده [English]

In recent decades, there has been considerable interest in magnetic nanoparticles study field, which is an applicable, high, productive, effective since it can be utilized as an agent for the wide bio, experimental, scientific and industrial applications.As the wide range of application ofsuperparamagnetism nano Fe3 O4, especially in bio fields, Magnetite and Functionalized magnetic nanoparticles composed of Fe3 O4 particles stabilised by Silane derivations prepared by the co-precipitation method.
For characterization of core-shell crystallographic structure of synthesized magnetic nanoparticles, X-ray diffractometer used. Produced MNPs morphology andtheir size distribution observed by scanning electron microscopy. In order to confirm the modification of magnetite surface with alkyl Silane some physical techniques, including Fourier transform infrared spectroscopy, element analysis (CHNS), and for magnetic measurement of magnetic nanoparticles (MNPs), Vibrating Sample Magnetometer, and finally for measurement of MNPs surface’s zeta potential and hydrodynamic diameter, zetasizer and Dynamic light Scattering used respectively.Results of referred techniques indicated that all the core-shell MNPs synthesized successfully and major step of functionalization of MNPs well have done.

کلیدواژه‌ها [English]

  • Fe3O4
  • co-precipitation
  • Alkyl
  • Synthesis
  • trimethoxy octadecyl silane
  1. Liu H, Hou P, Zhang W, Wu J. Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Mar 5;356(1-3):21-7.
  2. Zhu Y, Da H, Yang X, Hu Y. Preparation and characterization of core-shell monodispersed magnetic silica microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003 Dec 31;231(1-3):123-9.
  3.  Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzalez-Carreño T, Serna CJ. Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of magnetic materials. 2006 Feb 8;16(5):403-82.
  4. Sellmyer DJ, Skomski R, editors. Advanced magnetic nanostructures. Springer Science & Business Media; 2006 Jul 2.
  5. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bulletin of the Korean Chemical Society. 2012;33(12):3957-62.
  6. Liu G, Swierczewska M, Lee S, Chen X. Functional nanoparticles for molecular imaging guided gene delivery. Nano Today. 2010 Dec 1;5(6):524-39.
  7. Liu H, Hou P, Zhang W, Wu J. Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids Surf APhysicochem Eng Asp 2010;356:21–7.
  8. Baltrusaitis J, Grassian VH. Surface reactions of carbon dioxide at the adsorbed water− iron oxide interface. The Journal of Physical Chemistry B. 2005 Jun 30; 109(25):12227-30.
  9. Ishikawa T, Cai WY, Kandori K. Adsorption of molecules onto microporous hematite. Langmuir. 1993 Apr; 9(4):1125-8.
  10. Zhang L, He R, Gu HC. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science. 2006 Dec 30; 253(5):2611-7.
  11. Lee DG, Ponvel KM, Kim M, Hwang S, Ahn IS, Lee CH. Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic. 2009 May 1; 57(1-4):62-6.
  12. Bruce IJ, Sen T. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir. 2005 Jul 19; 21(15):7029-35.
  13. Can K, Ozmen M, Ersoz M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids and Surfaces B: Biointerfaces. 2009 Jun 1; 71(1):154-9.
  14. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: physicochemical and engineering aspects. 2003 Jan 23; 212(2-3):219-26.
  15. Wang J, Meng G, Tao K, Feng M, Zhao X, Li Z, Xu H, Xia D, Lu JR. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PloS one. 2012 Aug 30; 7(8):e43478.
  16. Rutman RJ, Chun EH, Lewis FS. Permeability difference as a source of resistance to alkylating agents in Ehrlich tumor cells. Biochemical and biophysical research communications. 1968 Aug 21; 32(4):650-7.
  17. Akhter S, Ahmad I, Ahmad MZ, Ramazani F, Singh A, Rahman Z, Ahmad FJ, Storm G, Kok RJ. Nanomedicines as cancer therapeutics: current status. Current cancer drug targets. 2013 May 1;13(4):362-78.
  18. Bagherpour A, Kashanian F, Seyed Ebrahimi S A, Habibi Rezaei M. L-Arginine modified magnetic nanoparticles: Green synthesis and characterization. Nanotechnology. 2018; 29(7).
  19. Kashanian F, Habibi-Rezaei M, Bagherpour AR, Seyedarabi A, Moosavi-Movahedi AA. Magnetic nanoparticles as double-edged swords: concentration-dependent ordering or disordering effects on lysozyme. RSC Advances. 2017;
  20. Can K, Ozmen M, Ersoz M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids and Surfaces B: Biointerfaces. 2009 Jun 1; 71(1):154-9.
  21. Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials. 2007 Jan 1; 308(1):46-55.
  22. Zhou X, Xu W, Wang Y, Kuang Q, Shi Y, Zhong L, Zhang Q. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. The Journal of Physical Chemistry C. 2010 Oct 28; 114(46):19607-13.
  23. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: physicochemical and engineering aspects. 2003 Jan 23; 212(2-3):219-26.
  24. Wei-Xian S, Jun Y, Ting-Jie W, Yong J. Surface organic modification of magnetic iron oxide black particles. Acta Physico-Chimica Sinca. 2001 Jun 15; 17(06):507-10.
  25. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3 O 4 nanoparticles. Scientific reports. 2017 Aug 30;7(1):9894.
  26. Vandendriessche S, Brullot W, Slavov D, Valev VK, Verbiest T. Magneto-optical harmonic susceptometry of superparamagnetic materials. Applied Physics Letters. 2013 Apr 22;102(16):161903.
  27. Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International journal of molecular sciences. 2013 Oct 25;14(11):21266-305.
  28. https://www.ucl.ac.uk/pharmacy/facilities/research-services/chn-elemental-microanalysis