اثر باکتری‌ احیاکنندۀ سولفات بر رفتار خوردگی فولادHSLA-X70 در محیط کشت باکتری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مواد، گرایش شناسایی و انتخاب مواد، دانشگاه شهید چمران اهواز،

2 استادیار، مهندسی مواد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز،

3 استاد، میکروبیولوژی، گروه زیست‌شناسی، دانشکده علوم ، دانشگاه شهید چمران اهواز،

چکیده

در این پژوهش، خوردگی ناشی از عوامل میکروبیولوژیک در اثر متابولیسم باکتری‌های احیا کننده سولفات (SRB) توسط رفتار الکتروشیمیایی و پدیده‌های سطحی مورد ارزیابی قرارگرفته است. نتایج حاصل از طیف‌نگاری امپدانس الکتروشیمیایی نشان می‌دهد که SRB با تغییر محیط کشت باکتری در طی یک ساعت اولیه تماس نمونه با محلول حاوی باکتری، منجر به افزایش مقاومت به خوردگی فولاد HSLA-X70از .cm2Ω 235 به .cm2Ω1651 می‌گردد. تصاویر ریزساختاری مربوط به نمونه قرار گرفته شده در محیط کشت فاقد باکتری، محصولات خوردگی را به صورت گسترده در مقایسه با نمونه قرارگرفته شده در محیط کشت حاوی باکتری نشان می‌دهد که سازگار با نتایج آزمون‌های الکتروشیمیایی است. در عوض، نمونه قرار گرفته در تماس با SRB با جوانه‌زنی کلنی‌های باکتری بر روی سطح همراه شده که گرچه با قلیایی نمودن محیط کشت آهنگ خوردگی یکنواخت را کاهش داده اما مکان‌های مستعد حفره‌زنی در زیر کلنی‌ها را فراهم نموده است. نتایج حاصل از آزمون پلاریزاسیون چرخه‌ای حساسیت به خوردگی حفر‌ه‌ای برای نمونه قرارگرفته در محلول حاوی باکتری را تایید می-نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sulfate Reducing Bacteria on the Corrosion Behavior of the HSLA X70 Steel in Bacteria Culture Medium

نویسندگان [English]

  • zahra shahryari 1
  • Khalilollah Gheisari 2
  • hossien motamedi 3
1 MSc, Department of Materials Science and Engineering, Shahid Chamran University of Ahvaz,
2 Assistant Professor, Department of Materials Science and Engineering, Shahid Chamran University of Ahvaz,
3 Professor, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz,
چکیده [English]

In this study, microbiologically influenced corrosion because of metabolite sulfate reducing bacteria (SRB) has been investigated in terms of its electrochemical behavior and surface phenomena. According to the results of electrochemical impedance spectroscopy, SRB through changing the bacteria culture medium during the first hour that sample was contacted to the bacteria solution, leads to an increase in corrosion resistance of HSLA X70 steels from 235 to 1651Ω.cm2. Microstructural examinations on the sample surface embedded in culture medium without bacteria, in comparison to the sample exposed to the culture medium with bacteria, indicate that corrosion products disperse widely which is consistent with the electrochemical tests results. On the contrary, sample exposed to the SRB included bacterial colonies, although shows a reduction in the uniform corrosion rate via the alkalization of the culture medium, provides sites under colonies which are prone to the pitting corrosion. The results of the cyclic polarization test confirm the susceptibility to pitting corrosion of the sample in the bacteria containing solution.

کلیدواژه‌ها [English]

  • sulfate reducing bacteria
  • microalloyed X70 steel
  • cyclic polarization
  • electrochemical impedance spectroscopy
[1]X. Chen, G. Wang, F. Gao, Y. Wang, C. He, Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings,  Corros.Sci., Vol. 101, Pp. 1-11, 2015.
[2] F. Kuang, J. Wang, L. Yan, D. Zhang, Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochimica.Acta, Vol. 52, No. 20, Pp. 6084-6088, 2007.
[3] R. Galvan‐Martinez, G. Garcia‐Caloca, R. Duran‐Romero, R. Torres‐Sanchez, J. Mendoza‐Flores, J. Genesca, Comparison of electrochemical techniques during the corrosion of X52 pipeline steel in the presence of sulfate reducing bacteria (SRB), Materials and Corrosion,Vol.  56, No. 10, Pp. 678-684 ,2005.
[4] W.A. Hamilton, Sulfate-Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., Vol. 39, Pp. 195-217., 1985
[5] J. Xu, C. Sun, M. Yan, F. Wang, Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution,  Int. J. Electrochem. Sci, 7, Pp. 11281-11296, 2012.
 [6] J. Liu, X. Liang, S.  Li, Effect of sulphate-reducing bacteria on the electrochemical impedance spectroscopy characteristics of 1Cr18Ni9Ti, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Vol. 14, No. 5, Pp. 425-430, 2007.
[7] W. P. Iverson, Biological corrosion, Advance Corros. Sci. Technol, Vol. 2, Pp.1-42, 1972.
[8] K.M. Moon, H.R.  Cho, M.H.  Lee, S.K.  Shin, S.C.Koh, Electrochemical analysis of the microbiologically influenced corrosion of steels by sulfate-reducing bacteria,  Met.Mater. Inter., Vol. 13, No. 3,  Pp. 211-216, 2007.
[9] C. Sun, J.  Xu, F.  Wang, Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm, Indust.Engineer. Chem. Research, Vol. 50, No. 22,  Pp. 12797-12806, 2011.
 [10] C. Sun, J.  Xu, F.H.  Wang, C.K.  Yu, Effects of SRB on cathodic protection of Q235 steel in soils, Mater.Corros., Vol. 61, No. 9, Pp. 762-767, 2010.
[11] F.M.  AlAbbas, C. Williamson, S.M. Bhola, J.R. Spear, D.L.  Olson, B. Mishra, A.E. Kakpovbia, Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy high-strength steel (API-5L X80), Inter.Biodeter. Biodegrad., Vol. 78, Pp. 34-42, 2013.
[12] S. Y. Li, Y. G. Kim, K. S. Jeon, Y. T. Kho, T. Kang, Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil, Corros., Vol. 57, No. 9, Pp. 815-828 ,2001.
[13]D.Sun, W. Ming, X. Fei, Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution, Mater. Sci. Engineer., Vol. 721, Pp. 135-144, 2018.
[14] F. M. Sani, A. Afshar, M. Mohammadi, Evaluation of the Simultaneous Effects of Sulfate Reducing Bacteria, Soil Type and Moisture Content on Corrosion Behavior of  Buried Carbon Steel API 5L X65, Int. J. Electrochem. Sci., Vol. 11, No. 5, Pp. 3887-3907 , 2016.
[15] W. Lee, Z.  Lewandowski, P.H.  Nielsen, W.A.  Hamilton, Role of sulfatereducing bacteria in corrosion of mild steel: A review. Biofoul.,Vol. 8, No. 3, Pp. 165-194, 1995.
[16] J. Duan, S.  Wu, X.  Zhang, G.  Huang, M.  Du, B.Hou, Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater, Electrochimica.Acta, Vol. 54, No. 1, Pp. 22-28,2008.
[17] B.W.A. Sherar, I. M. Power, P.G.Keech, S.Mitlin, G. Southam, D.W.  Shoesmith, Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion,  Corros.Sci., Vol. 53, No. 3, Pp.955-960,2011.
[18] M.Rodriguez‐Hernandez, R.GalvanMartinez, R.Orozco‐Cruz, E.A.Martinez, R.TorresSanchez, Influence of the sulphate reducing bacteria on APIX70 steel corrosion, Mater.Corros.,Vol.60, No. 12, Pp.982-986, 2009.
[19] Q. Zhang,Y. He, W. Wang, N. Lin, C. Wu,N. Li, Corrosion behavior of WC–Co hardmetals in the oil-in-water emulsions containing sulfate reducing Citrobacter sp., Corros.Sci., Vol. 94,Pp. 48-60, 2015.
[20] K. A. Zarasvand,  V. R. Rai, Identification of the traditional and non-traditional sulfate-reducing bacteria associated with corroded ship hull, 3 Biotech, Vol. 6, No. 2,Pp. 197, 2016.
[21] E. Ilhan-Sungur, D. Ozuolmez, A. Çotuk, N. Cansever, G. Muyzer, Isolation of a sulfide-producing bacterial consortium from cooling-tower water: evaluation of corrosive effects on galvanized steel, Anaerobe, Vol. 43, Pp. 27-34, 2017.
[22] H. T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M.Stratmann,F.Widdel, Iron corrosion by novel anaerobic microorganisms, Nature, Vol. 427, No. 6977, Pp.829, 2004.
[23]R. Javaherdashti, Microbiologically influenced corrosion: an engineering insight,Springer, 2016.
[24] F. M AlAbbas, R.Bhola, , J. R.Spear, D. L. Olson, B.Mishra, Electrochemical Characterization of Microbiologically Influenced Corrosion on Linepipe Steel Exposed to Facultative Anaerobic Desulfovibriosp., Int. J. Electrochem. Sci., Vol. 8 ,Pp. 859-871, 2013.
[25] X. Sheng, Y.P. Ting, S.O. Pehkonen, The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316,  Corros.Sci., Vol. 49, No. 5, Pp. 2159-2176,2007.
[26] J.Xu,C.Sun, M.Yan, F.Wang, Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution, Int. J. Electrochem.Sci., Pp. 11281-11296, 2012.
[27] C. Sun, J.  Xu, F.H.  Wang, C.K.  Yu, Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions,  Mater. Chem. Physics, Vol. 126, No. 1, Pp. 330-336, 2011.
[28] X. Wang, J.  Xu, C.  Sun, Influence of Sulfate Reducing Bacteria on Corrosion of Steel Q235 during Natural Evaporation in Soils, In Advanced Mater.Research, Vol. 610, Pp. 243-248, 2013.
[29] F. M.AlAbbas,W. Charles, M. B. Shaily, R. S. John, L. O. David, M. Brajendra, E. K. Anthony, Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field, J. mater.Engineer.Perform., Vol. 22, No. 11, Pp. 3517-3529, 2013. 
[30] D. Wang,  F. Xie, M. Wu, G. Liu, Y. Zong,X. Li, Stress Corrosion Cracking Behavior of  X80 Pipeline Steel in Acid Soil Environment with SRB, Metallurg.Mater.Transactions A, Vol. 48, No. 6,Pp. 2999-3007, 2017.
 [31] I.B.Beech, C.C.Gaylarde, Recent advances in the study of biocorrosion: an overview, Revista de microbiologia, Vol. 30, No. 3, Pp. 117-190,1999.
[32] M.M. Cowan, T. M. Warren, M. Fletcher, Mixedspecies colonization of solid surfaces in laboratory biofilms,  Biofoul., Vol.  3, No. 1, Pp. 23-34, 1991.
[33] D. Enning, J. Garrelfs, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem, Applied and environmental microbiology, Vol. 80, Pp. 1226-1236, 2014.