بررسی خواص مکانیکی، رفتار خوردگی و زیست سازگاری داربست متخلخلTi6Al4V برای کاربرد ایمپلنت دندانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مواد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی.

2 استاد، گروه مهندسی مواد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

3 دانشیار، گروه مهندسی مواد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

چکیده

تیتانیم و آلیاژهای آن به دلیل خواص مکانیکی خوب، مقاومت به خوردگی و زیست سازگاری عالی، یکی از مواد فلزی مهم برای ایمپلنت های ارتوپدی و دندانی می باشند. یکی از چالش های اصلی در ایمپلنت های دندانی، ساخت موادی می باشد که توانایی ایجاد پیوند قوی و سریع با بافت اطراف را داشته باشد. در پژوهش حاضر، داربست های متخلخل آلیاژ Ti6Al4V با استفاده از فضاساز منیزیم و به روش متالوژی پودر تولید گردیدند. نمونه ها در دمای 950 درجه سانتی گراد، زیر دمای استحاله β و نزدیک به نقطه جوش منیزیم زینتر شدند. بررسی ریزساختاری جهت ارزیابی تخلخل و تأثیر منیزیم بر روی آن، توسط میکروسکپ نوری و الکترونی صورت پذیرفت و سپس خواص مکانیکی و خوردگی الکتروشیمیایی نمونه ها مورد مطالعه قرار گرفت. زیست سازگاری توسط آزمون MTT بررسی گردید و نشان داد که با اقزایش تخلخل، میزان تکثیر سلولی و زیست سازگاری افزایش یافته است. این بررسی ها نشان داده است که داربست های متخلخل حاوی 10 درصد حجمی منیزیم با 31% تخلخل دارای استحکام MPa 155 و مدول الاستیک GPa 9 بوده و نزدیک به استخوان دندان می باشد. همچنین نتایج خوردگی الکتروشیمیایی و نرخ تکثیر سلولی مقاومت به خوردگی و استخوان سازی مناسب این نمونه را نشان می دهد. به دلیل اهمیت استحکام داربست در کاربردهای ایمپلنت دندانی و با توجه به نتایج به دست آمده، داربستTi6Al4V دارای 10% منیزیم می تواند جایگزین مناسبی برای کاربردهای کلینیکی که به هر دو مشخصه استحکام و استخوان سازی نیاز دارند، باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Mechanical Properties, Corrosion Behavior and Biocompatibility of Porous Ti6Al4V Scaffold for Dental Implant

نویسندگان [English]

  • sh Hosseini 1
  • sh Mirdamadi 2
  • ali Nemati 3
1 Ph.d student, Department of Material Engineering, Science and Research Branch, Islamic Azad University,
2 professor, Department of Material Engineering, Science and Research Branch, Islamic Azad University, mirdamadi@iust.ac.ir
3 Associate professor, Department of Material Engineering, Science and Research Branch, Islamic Azad University,
چکیده [English]

Titanium and its alloys are known as one of the most significant metallic materials used in the orthopedic and dental implants due to their excellent mechanical properties, corrosion resistance and biocompatibility. One of the main issues in dental implant is the fabrication of the biomaterials that have early and sufficiently strong bonding with the surrounding bone. In the present study, porous Ti6Al4V scaffolds were produced using magnesium as a space holder by powder metallurgy. The specimens were sintered in 950°C, below the β transition temperature, close to magnesium vaporization point. To evaluate the porosity and effect of magnesium on it, the micro structure was investigated by optical microscopy and SEM and then mechanical properties and electrochemical corrosion behavior of the specimens were studied. Biocompatibility was investigated by MTT test, and it was deduced that the cell proliferation and biocompatibility was increased with increasing the porosity. This investigation showed that the compressive strength and elastic modulus of the porous scaffold with 10% magnesium and 31% porosity are 155MPa and 9GPa, respectively and close to dental bone. Also, the corrosion results and cell proliferation showed the appropriate corrosion behavior and osseointegration of this scaffold. Due to the importance of strength in the dental implant and according to these results, the Ti6Al4V scaffold with 10%Mg could be an advanced alternative for clinical applications which two factors of strength and osseointegration are required.

کلیدواژه‌ها [English]

  • "Titanium alloy"
  • "Porosity"
  • "Compressive strength"
  • "Elastic modulus"
  • "Cell proliferation
[1]Chen, J., Paetzell, E., Zhou, J., Lyons, L., Soboyejo, W. Osteoblast-like cell ingrowth, adhesion and proliferation on porous Ti-6Al-4V with particulate and fiber scaffolds. Mater Sci Eng C, 30: 647-656, 2010.
[2]Wang,Y., Tao, J., Zhang, J., Wang, T. Effect of addition NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composite. Trans Nonferrous Met Soc , 21: 1074-1079.
[3]Esen, Z., Bor, S. Processing of titanium foams using magnesium spacer particles. Scr Mater 2007;  56: 341-344, 2011.
[4]Ryan, G.E., Pandit, A.S., Apatsidis, D.P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 29: 3625-3635, 2008.
[5]Wang, X., Li, Y., Xiong, J., Hodgson, P.D., Wen, C.E. porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater, 5: 3616-3624, 2009.
[6]Ryan, G., Pandit, A., Apatsidis, D.P. Fabrication method of porous metal for use in orthopedic applications. Biomaterials, 27: 2651-2670, 2006.
[7]Zhuang, H., Han, Y., feng, A. Preparation, Mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C, 28: 1462-1466, 2008.
[8]Gefen, A. Computational Simulation of Stress Shielding and Bone Resorption around Existing and Computer-Designed Orthopedic Screws. Med Biol Eng Comput, 40: 311-22, 2002.
[9]Seyedraoufi, Z.S., Mirdamadi, Sh. Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds.J Mech Behav Biomed Mater , 21: 1-8, 2013.
[10]Dewidar, M.M., Lim, J.K. Properties of solid core and porous surface Ti-6Al-4V implants manufactured by powder metallurgy. J Alloy Compd, 454: 442-446, 2008.
[11]Esen, Z., Bor, E. T., Bor, S. Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turkish J Eng Env Sci, 33: 207-219, 2009.
[12]Dewidar, M., Mohamed, H.F., Lim, J. K.A New Approach for Manufacturing a High Porosity Ti-6Al-4V Scaffolds for Biomedical Applications. J Mater Sci Technol, 24(6):931-935, 2008.
[13]Wen, C.E., Mabuchi, M., Yamada, Y. Shimojima, K., Chino, Y., Asahina, T. Processing of biocompatible porous Ti and Mg. Scr Mater, 45: 1147-1153, 2011.
[14]Murray, N.G.D., Dund, C. Effect of thermal history on the superplastic expansion of argon-filled pores in titanium. Acta Mater, 52(8): 2269-2278, 2004.
[15]Kotan, G., Bor, A.S. Production and characterization of high porosity Ti6Al4V foam by space holder technique in powder metallurgy. Turkish J Eng Env Sci, 31(3): 149-156, 2007.
[16]Hosseini, Sh., Mirdamadi, Sh. and Nemati, A., Porous Ti6Al4V scaffolds for dental implants: Microstructure, mechanical, and corrosion behavior, J Materials: Design and Applications, 2015.
[17]Freshney, R., I., Culture of Animal Cells: A Manual of Basic Technique, Fifth Edition, John Wiley & Sons, Inc, 2005.
[18]Chen, X.B., Li, Y.C., Hodgson, P.D., Wen, C. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation, Acta Biomater, 5: 2290–2302, 2009.
[19]Butev, E., Esen, Z., Bor., S. In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams. Appl Surf Sci, 327: 437-443, 2015.
[20]Li, N. and Zheng, Y., Novel magnesium alloys developed for biomedical application: a review, Mater Sci Tech, 29(6), 489-502, 2013.
[21]Stangl, R., Rinne, B.,Kastl, S. and Hendrich, C., The Influence of Pore Geometry in cp Ti-implants- A Cell Culture Investigation, Eur Cell Mater, 2, 1-9, 2001.