اثر فرآیند مارتمپرینگ پله ای و ناهمسانگردی بر میزان تابیدگی و اعوجاج فولاد ابزارگرم کار نورد سرد شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد دانشگاه آزاد کرج - مهندس شرکت مالیبل سایپا

2 دانشیار دانشکده مهندسی مواد دانشگاه علم و صنعت ایران

3 استادیار گروه مهندسی مواد و متالورژی دانشکده فنی و مهندسی-دانشگاه اراک

چکیده

در این تحقیق نقش ناهمسانگردی ساختاری ناشی از نورد سرد بر میزان تابیدگی و اعوجاج یک فولاد ابزار گرم کار مورد استفاده در قالب سازی قبل و بعد از عملیات حرارتی سخت کاری مورد مطالعه واقع شد. برای عملیات سخت کاری از فرآیند مارتمپرینگ پله ای استفاده شد. میزان تابیدگی در سه وضعیت شامل پس از ماشین کاری، پس از تنش گیری و پس از مارتمپرینگ از طریق فاکتور تختی مورد سنجش واقع شد. به منظور بررسی تاثیر ناهمسانگردی بر میزان اعوجاج فولاد، بسته به جهت نورد نمونه هایی در سه وضعیت هندسی تهیه شدند. میزان تابیدگی در نمونه ها قبل از مارتمپرینگ بسیار ناچیز و تابع جهت گیری نمونه ها نبوده و یک خاصیت همسانگرد می باشد. نتایج نشان داد که انجام مارتمپرینگ موجب اعوجاج فولاد شده و این تابیدگی بسته به هندسه نمونه برداری متفاوت است که مبین آن است که تابیدگی در فولاد سخت شده یک خصوصیت ناهمسانگرد است. کمترین اعوجاج مربوط به نمونه هایی بود که عمود بر جهت نورد تهیه شده بودند. اندازه گیری سختی نمونه ها نشان داد که برخلاف تابیدگی، سختی قبل و بعد از سخت کاری یک ویژگی همسانگرد و مستقل از جهت نمونه برداری است.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of the Step Martempering and Anisotropy on the Distortion Value a Cold Rolled Hot Work Tool Steel

نویسندگان [English]

  • Jamaleddin Fereshtekheslat 1
  • Seyed hossein Razavi 2
  • ashkan nouri 3
1
2
3 Assistant professor- department of materialas science and metallurgy-Arak university
چکیده [English]

In this investigation, the role of the structural anisotropy due to cold rolling on the distortion value of hot work tool steel employing in moulding before and after the hardening heat treatment was studied. For the hardening treatment, was used a step martempering process. Distortion amount was calculated by flatness factor in 3 states; after machining, after stress relief treatment and after martempering. For purpose of the consideration of the anisotropy effect on the steel distortion, were prepared samples dependent on the rolling direction in 3 geometrical states. Before martempering, the distortion value of the samples is very low and negligible. It is also independent on the sampling direction. Thus it is an isotropic characteristic. Results revealed that distortion is induced in the martempered steel. It is also significantly different in various directions of sampling. It is implied that in the hardened steel, distortion is an anisotropic property. The lowest distortion is belonging to sample which is perpendicular to the rolling direction. Hardeness measurement showed that this specification is an isotropic property in both before and after hardening and is not affected by the geometrical direction of sampling.

کلیدواژه‌ها [English]

  • Heat treatment
  • Martempering
  • Distortion
  • Structural anisotropy
  • Flatness
[1] V. C. Prantil, M. L. Callabresi, G. S. Ramaswamy, J. F. Larthrop, G. S. Ramaswamy, M. T. Lusk, “Simulating Distortion and Residual Stresses in Carburized Thin Strips”, J. Eng. Mater. Tech., 125 (2), 2003, 116 – 124.
[2] J. Cho, W. Kang, M. Kim, J. Lee, Y. Lee, W. Bae, “Distortions Induced by Heat Treatment of Automotive Bvel Gears”, J. Mater. Process. Tech., 153 – 154, 2004, 476 – 481.
[3] B. L. Ferguson, Z. Li, A. M. Freborg, “Modeling Heat treatment of Steel Parts”, Computational Mater. Sci., 34 (3), 2005, 274 – 281.
[4] [1]. G. Krauss, “Steels: Heat Treatment and Processing Principles”, American Society for Metals, 1990.
[5] M. Waldenstrom, “An Experimental Study of Carbide – Austenite Equilibria in Iron-Base Alloys with Mo, Cr, Ni and Mn in the Temperature Range 173 to 1373 K”, Metall. Trans. A, 8A, 1977, 1963 – 1977.
[6] B. Sundman, “Thermodynamic Databanks, Visions and Facts, Scand”, J. Metall., 20, 1991, 79 -85.
[7] D. R. Jack, K. R. Jack, “Carbides and Nitrides in Steel”, Mater. Sci. Eng., 11, 1973, 1 – 27.
[8] R. W. Rayson, “Tool Steels, Constitutionand Properties of Steels”, EB.Pickering, Ed., VCH Publishing, 1992.
[9] L. Eliasson, O. Sandberg, “Effect of Different Parameter on Heat – Checking Properties of Hot – Work Tool Steels”, New Materials and Processes for Tooling, H. Berns, H. Nordberg, H. J. Fleischer, Ed., VerlagSchurmann&Klagges K G, Bochum, Germany, 1989.
[10] W. Roberts,“Dynamics Changes that Occur during Hot Workinand Their Significance Regarding Microstructural Development and Hot Workability, Deformation Processing and Structure”, ASM Inter., 1984, 109 – 184.
[11] B. S. Lement, “Distortion in Tool Steels”, American Society for Metals, 1959.
[12] C. Prinz, B. Clasen, F. Hoffmann, R. Kohlmann, H. W. Zoch, “Metallurgical Influence on Distortion of the Case Hardening Steel 20MnCr5”, Mat-Wiss. U. Werkstoffech, 37 (1), 2006, 29 -33.
[13] K. E. Thelning, “Steel and Its Heat Treatment”, Hand Book, Butterworths, 1981.
[14] Y. K. Lee, M. T. Lusk, “Thermodynamic Prediction of the Eutectoid Transformation Temperatures of Low – Alloy Steels”, Metall. Trans. A, 30A, 1999, 2325 – 2329.
[15] C. R. Brooks, “Heat Treatment of Ferrous Alloys”, McGraw-Hill, Book Company, 1979.
[16] C. H. Guer, A. E. Tekkaya, “Numerical Investigation of Non-homogeneous Plastic Deformation in Quenching Process”, Mater. Sci. Eng., A 319-321, 2001, 164 – 169.
[17]B. Liscic, H. M. Tensi, W. Luti, “Theory and Technology of Quenching”, Springer – Verlag, Berlin, 1992.
[18] G. E. Totten, “Quenching and Distortion Control’, ASM Inter., 1992.
[19] A. J. Fletcher, ‘Thermal Stress and Strain Generation in Heat Treatment”, Elsevier Science, London, 1989.
[20] J. W. Jang, I. W. Park, K. H. Kim, S. S. Kang, “FE Program for Predicting Thermal Deformation in Heat Treatment”, J. Mater. Process. Tech., 130-131, 2002, 546 – 550.
[21] M. P. Lightfoot, N. A. McPherson, K. Woods, G. J. Bruce, “Artificial Neural Networks as an Aid to Steel Plate Distortion Reduction”, J. Mater. Process. Tech., 172, 2006, 238 – 242.
[22] X. D. Wang, F. Li, Z. Y. Jiang, “Thermal, Microstructural and Mechanical Coupling Analysis Model for Flatness Change Prediction during Run Out Table Cooling in Hot Strip Rolling”, J. Iron Steel Res. Inter., 19 (9), 2012, 45 – 51.
[23] S. M. Bel’skii, Y. A. Mukhin, S. I. Mazur, A. I. Goncharov, “Influence of the Cross Section of Hot – Rolled Steel on the Flatness of Cold – Rolled Strip”, Steel in Trans., 43(5), 2013, 313 – 316.
[24] S. Denis, E. Gautier, A. Simon, G. Beck, “Stress – Phase – Transformation Interactions – Basic Principles, Modeling, and Calculation of Internal stresses”, Mater. Sci. Tech., 1, 1985, 805 - 814.
[25] S. Denis, S. Sjostrom, A. Simon, “Temperatures, Stress, Phase Transformation Calculation Model Numerical Illustration of the Internal Stresses Evolution during Cooling of a Eutectoid Carbon steel Cylinder”, Metall. Trans. A, 18A, 1987, 1203 - 1212.
[26]T. Inoue, Z. Wang, “Coupling between stress, Temperature, and Metallic Structures during Processes Involving Phase Transformation”, Mater. Sci. Tech., 1, 1985, 845 - 850.
[27] S. J. Lee, Y. K. Lee, “Finite Element Simulation of Quench Distortion in a Low –Alloy Steel Incorporating Transformation Kinetics”, Acta Mater, 56, 2008, 1482 – 1490.
[28]R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles”, Third Ed. PWS Publishing Company, Boston, 1994.
[29] W. B. Hutchinson, K. Ushioda, G. Runnsjo, “Anisotropy of Tensile Behavior in Duplex Stainless Steel Sheet”, Mater. Sci. Tech., 1, 1985, 728 – 731.
[30] J. R. T. Branco, G. Krauss, “Toughness of H11/H13 Hot Work Die Steels”, New Materials Processes Experiences for Tooling, H. Berns, M. Hofmann, L. A. Norstrom, K. Rasche, A. M. Schindler, Ed., MAT SEARCH, Andelfingen, Switzerland, 1992, 121 – 134.
[31] STN EN ISO 1101: 2006, Geometrickespesifikacievyrobkov (GPS). Geometricketolerancietvaru, orietacie.Polohy a hadzania (ISO 1101: 2004).
[32] Flatness Measurement by Multi-point Methods and by Scanning Methods. Stanislav Lakota Gorog.Slovak University of Technology in Bratislava.
[33] F. Abbasi, A. J. Fletcher, A. B. Soomro, “A Critical Assesment of the Hardening of Steel by Martempering”, Inter. J. Production Res., 25 (7), 1987, 1069 – 1080.
[34] C. Prinz, M. Hunkel, B. Clausen, F. Hoffmann, H. W. Zoch, “Characterization of Segregations and Microstructure and Their Influence on Distortion of Low Alloy SAE 5120 Steel”, Mat-Wiss. U. Werkstoffech, 40 95-6), 2009, 368 – 373.
[35] X. Wang, Q. Yang, A. He, “Calculation of Thermal Stress Affecting Stip Flatness Change during Run – Out Table Cooling in Hot Steel”, J. Mater. Proc. Tech., 207, 2008, 130 – 146.